具有状态反馈脉冲控制的叶螨 - 捕植螨系统的 动力分析

杨韶宇*,张 蒙

北京建筑大学理学院,北京

收稿日期: 2024年5月17日; 录用日期: 2024年6月11日; 发布日期: 2024年6月18日

摘要

叶螨取食重要农业植物的叶和果实,是田间农作物的一大害虫,人们利用捕植螨对其进行控制。本文建 立了Smith增长且具有Beddington-DeAngelis型功能反应的叶螨-捕植螨系统,并对该系统的有界性, 极限环不存在以及平衡点的类型和其稳定性进行了分析。同时,基于这个模型又建立了具有脉冲控制的 状态反馈脉冲模型,证明了其阶一周期解的存在性。

关键词

叶螨,捕植螨,Smith增长,Beddington-DeAngelis型功能反应,阶一周期解

The Dynamic Analysis of the Spider Mite-Phytoseiid Mite System with State-Feedback Impulse Control

Shaoyu Yang*, Meng Zhang

School of Science, Beijing University of Civil Engineering and Architecture, Beijing

Received: May 17th, 2024; accepted: Jun. 11th, 2024; published: Jun. 18th, 2024

Abstract

The spider mites feed on leaves and fruits of important agricultural plants and are a major pest to crops in the field. People use phytoseiidae mites to control them. In this paper, a Smith increased spider mite-phytoseiidae mites system with Beddington-Deangelis functional response is established. The boundedness, the existence of the limit cycle, the types of equilibrium points and their

*通讯作者。

stability of the system are analyzed. At the same time, based on the model, a state feedback impulse model is established to prove the existence of its order-1 periodic solution.

Keywords

Spider Mite, Phytoseiidae Mite, Smith Growth, Beddington-DeAngelis Functional Response, Order-1 Periodic Solution

Copyright © 2024 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC O Open Access

1. 引言

叶螨是一类植食性螨,主要取食重要农业植物(包括果树)的叶和果实,具有发育快,适应性强,抗药性强等特点,是世界五大害虫之一。1971年,在加利福尼亚的果园里发现植绥螨是叶螨的有效捕食者[1]; [2]中也证明了一种捕食性螨可以控制欧洲的红叶螨。

很多研究者认为在更大的时间和空间尺度上,功能反应更加依赖于捕食者,比率依赖功能反应作为捕 食者功能反应的一个重要形式[3],很好地描述了捕食者之间相互干扰的影响。但它存在"低密度问题"[4], 1975 年,Beddington 和 DeAngelis 各自独立提出了一个新的捕食者依赖的功能反应[5][6],后世称为 Beddington-DeAngelis 功能反应。该功能反应在保持了比率依赖功能反应的某些特性的同时避免了"低密度 问题"[7]。此外,由于 Smith 增长比常用的 Logistic 增长更能描述真实的生物生长[8][9],因此本文建立了 一个食饵具有 Smith 增长且与捕食者之间的相互作用为 Beddington-DeAngelis 功能反应的食饵 - 捕食者模型。

陈等人提出了关于"半连续动力系统"的基本概念[10]; Meng 和 Jiao 等人研究了具有状态反馈脉冲 的 SI 传染病模型[11] [12]。

我们建立了一个具有Smith增长且食饵与捕食者之间的相互作用为Beddington-DeAngelis功能反应的 食饵-捕食者模型,并对其进行了动力学分析;在第三部分,在原模型的基础上加入单边脉冲构成新的 模型,进而证明新模型阶一周期解的存在性。

2. 无脉冲分析

以 Smith 增长为食饵叶螨的内禀增长函数,其与捕食者之间相互作用为 Beddington-DeAngelis 型功能反应建立如下模型

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x(a-bx)}{1+cx} - \frac{mxy}{\alpha+\beta x+\gamma y}, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{kmxy}{\alpha+\beta x+\gamma y} - dy. \end{cases}$$
(1)

其中 m 表示消耗率, α 为食饵的饱和常数, β 捕食者的干扰, γ 另一个饱和常数, k 转化率, 这里所有的参数都是正的。

垂直等倾线:

$$x=0; y=\frac{(a-bx)(\alpha+\beta x)}{(1+cx)m-(a-bx)\gamma}.$$

水平等倾线:

$$y = 0; \ y = \frac{(km - d\beta)x - d\alpha}{d\gamma}.$$

因此边界平衡点有 $E_0(0,0), \ E_1\left(\frac{a}{b}, 0\right)$ 。
定理 1 当参数满足条件 H1 时, 系统有唯一的正平衡点 $E_2(x^*, y^*)$, 其中 x^*, y^* 满足
$$\left(\frac{a - bx^*}{1 + cx^*} - \frac{my^*}{\alpha + \beta x^* + \gamma y^*} = 0,\right)$$

$$\begin{cases} 1+cx \quad \alpha+\beta x +\gamma y\\ \frac{kmx^*}{\alpha+\beta x^*+\gamma y^*} - d = 0. \end{cases}$$
(2)

于是 $y^* = \frac{1}{\gamma} \left[\left(\frac{km}{d} - \beta \right) x^* - \alpha \right]$,这里满足 $km - d\beta > 0$ 才有可能存在正平衡点,因此下述讨论均在条件 $km - d\beta > 0$ 下进行。

定理 2 平衡点 E_0 为鞍点; 当 $\frac{a\kappa m}{b\alpha + a\beta} > d$ 时, 平衡点 E_1 是鞍点, 当 $\frac{a\kappa m}{b\alpha + a\beta} < d$ 时, 平衡点 E_1 是稳 定的结点。

证明 系统的 Jacobi 矩阵为

$$\begin{pmatrix} \frac{a-bx}{1+cx} - \frac{my}{\alpha+\beta x+\gamma y} + x \left[-\frac{b+ac}{\left(1+cx\right)^2} + \frac{\beta my}{\left(\alpha+\beta x+\gamma y\right)^2} \right] & -\frac{\left(\alpha+\beta x\right)mx}{\left(\alpha+\beta x+\gamma y\right)^2} \\ \frac{\left(\alpha+\gamma y\right)kmy}{\left(\alpha+\beta x+\gamma y\right)^2} & \frac{\left(\alpha+\beta x\right)kmx}{\left(\alpha+\beta x+\gamma y\right)^2} - d \end{pmatrix}$$

对于边界平衡点 $E_0(0,0)$,

$$J(E_0) = \begin{pmatrix} a & 0 \\ 0 & -d \end{pmatrix},$$

于是平衡点 E₀为鞍点。

对于边界平衡点
$$E_1\left(\frac{a}{b},0\right)$$
,
$$J(E_1) = \begin{pmatrix} -\frac{(b+ac)\frac{a}{b}}{\left(1+\frac{ac}{b}\right)^2} & -\frac{m\frac{a}{b}}{\alpha+\beta\frac{a}{b}} \\ 0 & \frac{km\frac{a}{b}}{\alpha+\beta\frac{a}{b}} - d \end{pmatrix} = \begin{pmatrix} -\frac{ab}{b+ac} & -\frac{am}{b\alpha+a\beta} \\ 0 & \frac{akm}{b\alpha+a\beta} - d \end{pmatrix}$$

$$D = -\frac{ab}{b+ac} \left(\frac{akm}{\alpha b+a\beta} - d \right), \quad T = -\frac{ab}{b+ac} + \frac{akm}{\alpha b+a\beta} - d \circ$$
$$T^{2} - 4D = \left(-\frac{ab}{b+ac} + \frac{akm}{\alpha b+a\beta} - d \right)^{2} - 4 - \frac{ab}{b+ac} \left(\frac{akm}{\alpha b+a\beta} - d \right)^{2}$$
$$= \left(\frac{ab}{b+ac} + \frac{akm}{\alpha b+a\beta} - d \right)^{2}$$

于是有当 $\frac{akm}{b\alpha + a\beta} > d$ 时,平衡点 E_1 是鞍点;当 $\frac{akm}{b\alpha + a\beta} < d$ 时,平衡点 E_1 是稳定的结点。 定理3 当 $\frac{(b+ac)x^*}{(1+cx^*)^2} - \frac{m(\beta - k\gamma)x^*y^*}{(\alpha + \beta x^* + \gamma y^*)^2} > 0$ 时, E_2 是稳定的结点或焦点;当 $\frac{(b+ac)x^*}{(\alpha + \beta x^* + \gamma y^*)^2} < 0$ 时, E_2 是不稳定的结点或焦点。

$$\frac{\left(1+cx^*\right)^2}{\left(\alpha+\beta x^*+\gamma y^*\right)^2} = \frac{\left(\alpha+\beta x^*+\gamma y^*\right)^2}{\left(\alpha+\beta x^*+\gamma y^*\right)^2}$$

证明 $E_2(x^*,y^*)$ 的 Jacobi 矩阵为

$$J(E_{2}) = \begin{pmatrix} x^{*} \left[-\frac{b+ac}{\left(1+cx^{*}\right)^{2}} + \frac{\beta m y^{*}}{\left(\alpha+\beta x^{*}+\gamma y^{*}\right)^{2}} \right] & -\frac{m\left(\alpha+\beta x^{*}\right)x^{*}}{\left(\alpha+\beta x^{*}+\gamma y^{*}\right)^{2}} \\ \frac{km\left(\alpha+\gamma y^{*}\right)y^{*}}{\left(\alpha+\beta x^{*}+\gamma y^{*}\right)^{2}} & -\frac{km\gamma x^{*}y^{*}}{\left(\alpha+\beta x^{*}+\gamma y^{*}\right)^{2}} \end{pmatrix},$$

于是

$$D = \frac{kmx^{*}y^{*}}{\left(\alpha + \beta x^{*} + \gamma y^{*}\right)^{2}} \left[\frac{(b+ac)\gamma x^{*}}{(1+cx^{*})^{2}} + \frac{m\alpha}{\alpha + \beta x^{*} + \gamma y^{*}} \right],$$
$$T = -\frac{(b+ac)x^{*}}{(1+cx^{*})^{2}} + \frac{m(\beta - k\gamma)x^{*}y^{*}}{(\alpha + \beta x^{*} + \gamma y^{*})^{2}},$$
$$T^{2} - 4D = \frac{(b+ac)^{2}x^{*2}}{(1+cx^{*})^{4}} + \frac{m^{2}(\beta - k\gamma)^{2}x^{*2}y^{*2}}{(\alpha + \beta x^{*} + \gamma y^{*})^{4}} - \frac{4km^{2}\alpha x^{*}y^{*}}{(\alpha + \beta x^{*} + \gamma y^{*})^{3}}$$
$$- \frac{2m(b+ac)(\beta + k\gamma)x^{*2}y^{*}}{(1+cx^{*})^{2}(\alpha + \beta x^{*} + \gamma y^{*})^{2}}.$$

因此有

当
$$\frac{(b+ac)x^{*}}{(1+cx^{*})^{2}} - \frac{m(\beta-k\gamma)x^{*}y^{*}}{(\alpha+\beta x^{*}+\gamma y^{*})^{2}} > 0$$
时, E_{2} 是稳定的结点或焦点;
当 $\frac{(b+ac)x^{*}}{(1+cx^{*})^{2}} - \frac{m(\beta-k\gamma)x^{*}y^{*}}{(\alpha+\beta x^{*}+\gamma y^{*})^{2}} < 0$ 时, E_{2} 是不稳定的结点或焦点。

接下来,我们只考虑 $k\gamma - \beta > 0$ 的情况,此时 E_2 是稳定的结点或焦点(系统(1)的轨线图如图 1 所示)。

Figure 1. The trajectory diagram of system (1) 图 1. 系统(1)的轨线图

定理 4 系统(1)是一致有界的。
证明 过
$$E_1\left(\frac{a}{b},0\right)$$
点垂直于 x-轴作直线 $l_1: x = x_1 = \frac{a}{b}$,其交水平等倾线 $y = \frac{(km - d\beta)x - d\alpha}{d\gamma}$ 于点
 $Q\left(\frac{a}{b}, \frac{akm}{bd\gamma} - \frac{a\beta}{b\gamma} - \frac{\alpha}{\gamma}\right)$,过点 Q 作垂直于 y-轴的直线 $l_2: y = y_1 = \frac{akm}{bd\gamma} - \frac{a\beta}{b\gamma} - \frac{\alpha}{\gamma}$,与 y-轴相交于点 P,于是
 $OPQE_1$ 构成一个 Bendixson 环(如图 2 所示)。

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}t}\Big|_{y=y_1} &= y_1 \left(\frac{kmx}{\alpha + \beta x + \gamma y_1} - d\right) \\ &= y_1 \frac{(km - d\beta)x - d\gamma y_1 - d\alpha}{\alpha + \beta x + \gamma y_1} \\ &\leq \frac{y_1}{\alpha + \beta x + \gamma y_1} \left[(km - d\beta)\frac{a}{b} - d\gamma \left(\frac{akm}{bd\gamma} - \frac{a\beta}{b\gamma} - \frac{\alpha}{\gamma}\right) - d\alpha \right] \\ &= 0, \end{aligned}$$

此时轨线从12的上方穿到12的下方。

此外 *x* = 0 , *y* = 0 是系统的轨线,因此系统在第一象限的一致有界性得证。 **定理 5** 系统(1)的极限环不存在。

证明 定义 Dulac 函数 $D = \frac{1}{xy}$,则

$$PD = \frac{a - bx}{(1 + cx)y} - \frac{m}{\alpha + \beta x + \gamma y}, \quad QD = \frac{km}{\alpha + \beta x + \gamma y} - \frac{d}{x},$$

于是有 $\frac{\partial(PD)}{\partial x} + \frac{\partial(QD)}{\partial y} = -\frac{b+ac}{(1+cx)^2 y} - \frac{m(k\gamma - \beta)}{(\alpha + \beta x + \gamma y)^2} < 0$,

根据 BendixsonDulac 定理知,系统(1)无极限环。

3. 状态脉冲分析

在系统(1)中,当x=h,时加入状态反馈脉冲控制,得到如下模型(3)

$$\begin{cases} \frac{dx}{dt} = \frac{x(a-bx)}{1+cx} - \frac{mxy}{\alpha+\beta x+\gamma y} \\ \frac{dy}{dt} = \frac{kmxy}{\alpha+\beta x+\gamma y} - dy \end{cases} x > h_1, \\ \Delta x = px^* \\ \Delta y = -\delta_1 y \end{cases} x = h_1, 0 < y < \frac{mh_1(1+ch_1) - (a-bh_1)(\alpha+\beta h_1)}{(a-bh_1)\gamma}.$$
(3)

水平等倾线交 *x*-轴于点 *A*,脉冲集 *M*₁与垂直等倾线的交点为 *B*,过 *B* 的轨线与相集 *N*₁的第一个交 点为 *C*,第二个交点为 *D*;相集 *N*₁与水平等倾线远离 *x*-轴的交点为 *F*。脉冲映射 φ_1 将 *B* 映射到 *N*₁上的 *B*⁺处,若 *B*⁺与 *C* 重合,则显然 *CDBB*⁺构成一个阶一周期解,下面讨论两点不重合的情况。

定理6 当 $y_{p^+} > y_c$ 时,系统(3)存在阶一周期解。

证明 此时 *C* 点的后继函数为 $f(C) = y_{B^+} - y_C > 0$; 在 $N_1 \perp F$ 的上方取一点 F_1 , 过 F_1 的轨线交 M_1 于点 F_2 ,根据系统轨线的走势知 $y_{F_2} < y_{F_1}$, φ_1 将 F_2 映射到 F_2^+ 处,且有 $y_{F_2^+} = (1-\delta_1)y_{F_2}$,于是有 $y_{F_2^+} < y_{F_1}$, 即 F_1 的后继函数 $f(F_1) = y_{F_2^+} - y_{F_1} < 0$; 因此根据后继函数的连续性得到在点 $C = F_1$ 之间存在一点 F_3 使得其后继函数为零,阶一周期解的存在性得证(如图 3 所示)。

定理7 当 $y_{p+} < y_{c}$ 时,系统(3)存在阶一周期解。

证明 过 *B*⁺的轨线交 *M*₁ 于 *B*₁, 由轨线的性质知 *B*₁一定在 *B* 的上方, 脉冲映射 φ_1 将 *B*₁映射到 *B*₁⁺, 且有 $y_{B_1^+} = (1-\delta_1) y_{B_1}$,又因 $y_{B^+} = (1-\delta_1) y_{B}$,于是得到 $y_{B_1^+} > y_{B^+}$,即 *B*⁺的后继函数 $f(B^+) = y_{B_1^+} - y_{B^+} > 0$; 后面的步骤与上述定理相同,因此系统存在阶一周期解(如图 4 所示)。

DOI: 10.12677/aam.2024.136249

Figure 3. System (3) exists an unilateral order-1 solution for the case $y_{B^+} > y_C$

Figure 4. System (3) exists an unilateral order-1 solution for the case $y_{B^+} < y_C$ 图 4. $y_{B^+} < y_C$ 时,系统(3)存在阶一周期解

在系统(1)中,当 $x = h_2$ 时加入状态反馈脉冲控制,得到如下模型(4)

$$\begin{cases}
\frac{dx}{dt} = \frac{x(a-bx)}{1+cx} - \frac{mxy}{\alpha+\beta x+\gamma y} \\
\frac{dy}{dt} = \frac{kmxy}{\alpha+\beta x+\gamma y} - dy
\end{cases} x < h_2, \\
\frac{dx}{\Delta x} = -qx^* \\
\Delta y = \delta_2 y
\end{cases} x = h_2, y > \frac{mh_1(1+ch_1) - (a-bh_1)(\alpha+\beta h_1)}{(a-bh_1)\gamma}.$$
(4)

 $y = \frac{(km - d\beta)x - d\alpha}{d\gamma}$ 交 x-轴于点 A, B 为脉冲集 $M_2 = y = \frac{(km - d\beta)x - d\alpha}{d\gamma}$ 的交点, 过 B 的轨线与相

集 N_2 的第一个交点为 C,第二个交点为 D,脉冲函数 φ_2 将 B 映射到点 B^+ 。若 $y_{B^+} = y_D$ 或 $y_{B^+} = y_C$ 时,显然系统(4)存在阶一周期解,下面说明 $y_{B^+} < y_D$, $y_D < y_{B^+} < y_C$ 和 $y_{B^+} > y_C$ 三种情况。

定理8 当 $y_{R^+} < y_D$ 时,系统(4)存在周期解。

证明 过 B^+ 的轨线交脉冲集 M_2 于点 B_1 ,由系统轨线的性质知 B_1 在的下方 B,脉冲映射 φ_2 将其映射

到相集 N_2 上的 B_1^+ ,显然 B_1^+ 也在 B^+ 的下方,于是有后继函数 $f(B^+) = y_{B_1^+} - y_{B^+} < 0$;在 N_2 上取一点 B_2 满足 $0 < y_{B_2} < \varepsilon(\forall \varepsilon > 0)$,过 B_2 的轨线交 M_2 于点 B_3 且有 $y_{B_3} > y_{B_2}$, φ_2 将其映射到 N_2 上的点 B_3^+ 处,显 然 $y_{B_3^+} > y_{B_2}$,于是有后继函数 $f(B_2) = y_{B_3^+} - y_{B_2} > 0$;因此根据后继函数的连续性,在 B^+ 与 B_2 之间一定 存在一点使得在该点处的后继函数为零,阶一周期解的存在行得证(如图 5 所示)。

Figure 5. System (4) exists an unilateral order-1 solution for the case $y_D > y_{B^+}$

图 5. $y_D > y_{B^+}$ 时,系统(4)存在阶一周期解

定理9 当 $y_D < y_{B^+} < y_C$ 时,以C为研究点,与上述证明类似可以同样可以得到系统(4)存在阶一周期 解。

定理 10 当 $y_{p+} > y_C$ 时,系统(4)存在阶一周期解。

证明 过 B⁺的轨线与脉冲集 M₂相交于点 B₁,根据系统(4)的轨线走势知 y_{B1} < y_B,接着脉冲映射 φ_2 将 其映射到 N₂上的 B⁺₁,有 y_{B1} = (1+ δ_2) y_{B1},而 y_B⁺ = (1+ δ_2) y_B,因此有 $f(B^+) = y_{B1} - y_{B^+} < 0$;在 N₂上 取一点 B₂ 满足 0 < y_{B2} < ε ($\forall \varepsilon > 0$),过 B₂ 的轨线交 M₂ 于点 B₃且有 y_{B3} > y_{B2}, φ_2 将其映射到 N₂上的点 B⁺₃ 处,显然 y_{B1} > y_{B2},于是 B₂ 的后继函数 $f(B_2) = y_{B1} - y_{B2} > 0$ 。

因此由后继函数的连续性得到,在 B^+ 与 B_2 之间一定存在一点 B_4 ,满足 $f(B_4)=0$,于是系统(4)阶一周期解的存在性得证(如图 6 所示)。

Figure 6. System (4) exists an unilateral order-1 solution for the case $y_{B^+} > y_C$

图 6. $y_{B^+} > y_C$ 时,系统(4)存在阶一周期解

4. 结论

本文构建了一个食饵具有Smith增长且与捕食者之间的相互作用为Beddington-DeAngelis功能反应的 模型来描述叶螨和捕植螨的这对食饵 - 捕食者关系,同时也通过加入状态反馈脉冲控制来人为干预它们, 并证明了状态反馈脉冲控制系统阶一周期解的存在性,于是得到当食饵增加到一定规模时,捕杀叶螨, 当食饵减小到一定规模时,收获捕植螨,以此使系统达到平衡状态。

参考文献

- [1] Hoyt, S.C. and Caltagirone, L.E. (1971) The Developing Programs of Integrated Control of Pests of Apples in Washington and Peaches in California. Springer, 1-11.
- [2] Hoy, M.A., Roush, R.T. and Smith, K.B. (1979) Spider Mites and Predators in San Joaquin Valley Almond Orchards. *California Agriculture*, **33**, 11-13.
- [3] McMurtry, J.A. and van de Vrie, M. (1973) Predation Byamblyseius Potentillae (Garman) Onpanonychusulmi (Koch) in Simple Ecosystems (Acarina: Phytoseiidae, Tetranychidae). *Hilgardia*, 42, 17-33.
- [4] Rabbinge, R and Vrie, M.V.D. (1977) Application of the Process Simulation Technique in Biological Control of the Fruit Tree Red Spider Mite, *Panonychus ulmi* (Koch).
- [5] Beddington, J.R. (1975) Mutual Interference between Parasites or Predators and Its Effect on Searching Efficiency. *The Journal of Animal Ecology*, **44**, 331-340. <u>https://doi.org/10.2307/3866</u>
- [6] DeAngelis, D.L., Goldstein, R.A. and O'Neill, R.V. (1975) A Model for Tropic Interaction. *Ecology*, 56, 881-892. <u>https://doi.org/10.2307/1936298</u>
- [7] Morozov, A. and Arashkevich, E. (2008) Patterns of Zooplankton Functional Response in Communities with Vertical Heterogeneity: A Model Study. *Mathematical Modelling of Natural Phenomena*, 3, 131-148. https://doi.org/10.1051/mmnp:2008061
- [8] Zhang, H., Georgescu, P. and Chen, L. (2008) On the Impulsive Controllability and Bifurcation of a Predator-Pest Model of IPM. *Biosystems*, 93, 151-171. <u>https://doi.org/10.1016/j.biosystems.2008.03.008</u>
- [9] Sivakumar, M., Sambath, M. and Balachandran, K. (2015) Stability and Hopf Bifurcation Analysis of a Diffusive Predator-prey Model with Smith Growth. *International Journal of Biomathematics*, 8, 1550013. <u>https://doi.org/10.1142/s1793524515500138</u>
- [10] 陈兰荪,程惠东. 害虫综合防治建模驱动"半连续动力系统理论"兴起[J]. 数学建模及其应用, 2021, 10(1): 1-16.
- [11] Meng, X., Song, Z. and Chen, L. (2007) A New Mathematical Model for Optimal Control Strategies of Integrated Pest Management. *Journal of Biological Systems*, 15, 219-234. <u>https://doi.org/10.1142/s0218339007002143</u>
- [12] Jiao, J., Chen, L. and Luo, G. (2008) An Appropriate Pest Management SI Model with Biological and Chemical Control Concern. Applied Mathematics and Computation, 196, 285-293. <u>https://doi.org/10.1016/j.amc.2007.05.072</u>