[1] |
Zagoskina, N.V., Zubova, M.Y., Nechaeva, T.L., Kazantseva, V.V., Goncharuk, E.A., Katanskaya, V.M., et al. (2023) Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal of Molecular Sciences, 24, Article 13874. https://doi.org/10.3390/ijms241813874 |
[2] |
Quideau, S., Deffieux, D., Douat‐Casassus, C. and Pouységu, L. (2011) Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angewandte Chemie International Edition, 50, 586-621. https://doi.org/10.1002/anie.201000044 |
[3] |
Abdel‐Moneim, A.E., Shehata, A.M., Alzahrani, S.O., Shafi, M.E., Mesalam, N.M., Taha, A.E., et al. (2020) The Role of Polyphenols in Poultry Nutrition. Journal of Animal Physiology and Animal Nutrition, 104, 1851-1866. https://doi.org/10.1111/jpn.13455 |
[4] |
Marranzano, M., Rosa, R.L., Malaguarnera, M., Palmeri, R., Tessitori, M. and Barbera, A.C. (2019) Polyphenols: Plant Sources and Food Industry Applications. Current Pharmaceutical Design, 24, 4125-4130. https://doi.org/10.2174/1381612824666181106091303 |
[5] |
Wu, Q. and Zhou, J. (2021) The Application of Polyphenols in Food Preservation. Advances in Food and Nutrition Research, 98, 35-99. https://doi.org/10.1016/bs.afnr.2021.02.005 |
[6] |
Alappat, B. and Alappat, J. (2020) Anthocyanin Pigments: Beyond Aesthetics. Molecules, 25, Article 5500. https://doi.org/10.3390/molecules25235500 |
[7] |
Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C. and Restani, P. (2021) Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13, Article 273. https://doi.org/10.3390/nu13010273 |
[8] |
Li, J., Liao, R., Zhang, S., Weng, H., Liu, Y., Tao, T., et al. (2023) Promising Remedies for Cardiovascular Disease: Natural Polyphenol Ellagic Acid and Its Metabolite Urolithins. Phytomedicine, 116, Article 154867. https://doi.org/10.1016/j.phymed.2023.154867 |
[9] |
Nethengwe, M., Kerebba, N., Okaiyeto, K., Opuwari, C.S. and Oguntibeju, O.O. (2024) Antioxidant, Anti-Diabetic, and Anti-Inflammation Activity of Garcinia livingstonei Aqueous Leaf Extract: A Preliminary Study. International Journal of Molecular Sciences, 25, Article 3184. https://doi.org/10.3390/ijms25063184 |
[10] |
Hazafa, A., Rehman, K., Jahan, N. and Jabeen, Z. (2019) The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutrition and Cancer, 72, 386-397. https://doi.org/10.1080/01635581.2019.1637006 |
[11] |
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. and Jin, B. (2022) Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chemistry, 383, Article ID: 132531. https://doi.org/10.1016/j.foodchem.2022.132531 |
[12] |
Tinikul, R., Chenprakhon, P., Maenpuen, S. and Chaiyen, P. (2018) Biotransformation of Plant-Derived Phenolic Acids. Biotechnology Journal, 13, Article ID: 1700632. https://doi.org/10.1002/biot.201700632 |
[13] |
Gao, Q., Zheng, R., Lu, J., Li, X., Wang, D., Cai, X., et al. (2024) Trends in the Potential of Stilbenes to Improve Plant Stress Tolerance: Insights of Plant Defense Mechanisms in Response to Biotic and Abiotic Stressors. Journal of Agricultural and Food Chemistry, 72, 7655-7671. https://doi.org/10.1021/acs.jafc.4c00326 |
[14] |
Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J. and Mansfield, S.D. (2016) Designer Lignins: Harnessing the Plasticity of Lignification. Current Opinion in Biotechnology, 37, 190-200. https://doi.org/10.1016/j.copbio.2015.10.009 |
[15] |
Oulahal, N. and Degraeve, P. (2022) Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Frontiers in Microbiology, 12, Article 753518. https://doi.org/10.3389/fmicb.2021.753518 |
[16] |
Sun, X., Zhou, T., Wei, C., Lan, W., Zhao, Y., Pan, Y., et al. (2018) Antibacterial Effect and Mechanism of Anthocyanin Rich Chinese Wild Blueberry Extract on Various Foodborne Pathogens. Food Control, 94, 155-161. https://doi.org/10.1016/j.foodcont.2018.07.012 |
[17] |
Reddy, V.P., Aryal, P. and Darkwah, E.K. (2022) Advanced Glycation End Products in Health and Disease. Microorganisms, 10, Article 1848. https://doi.org/10.3390/microorganisms10091848 |
[18] |
Li, Y., Peng, Y., Shen, Y., Zhang, Y., Liu, L. and Yang, X. (2022) Dietary Polyphenols: Regulate the Advanced Glycation End Products-Rage Axis and the Microbiota-Gut-Brain Axis to Prevent Neurodegenerative Diseases. Critical Reviews in Food Science and Nutrition, 63, 9816-9842. https://doi.org/10.1080/10408398.2022.2076064 |
[19] |
Keramat, M., Ehsandoost, E. and Golmakani, M. (2023) Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods, 12, Article 1191. https://doi.org/10.3390/foods12061191 |
[20] |
Şahin, S., Bilgin, M., Gülmez, Ö., Güçlü, K. and Özyürek, M. (2021) Enrichment of Hazelnut Oil with Several Polyphenols: An Alternative Approach to a New Functional Food. Journal of Oleo Science, 70, 11-19. https://doi.org/10.5650/jos.ess20173 |
[21] |
Tian, L., Kejing, Y., Zhang, S., Yi, J., Zhu, Z., Decker, E.A., et al. (2021) Impact of Tea Polyphenols on the Stability of Oil-in-Water Emulsions Coated by Whey Proteins. Food Chemistry, 343, Article ID: 128448. https://doi.org/10.1016/j.foodchem.2020.128448 |
[22] |
Gong, T., Chen, B., Hu, C.Y., Guo, Y.R., Shen, Y.H. and Meng, Y.H. (2022) Resveratrol Inhibits Lipid and Protein Co-Oxidation in Sodium Caseinate-Walnut Oil Emulsions by Reinforcing Oil-Water Interface. Food Research International, 158, Article ID: 111541. https://doi.org/10.1016/j.foodres.2022.111541 |
[23] |
Pan, J., Gong, G., Wang, Q., Shang, J., He, Y., Catania, C., et al. (2022) A Single-Cell Nanocoating of Probiotics for Enhanced Amelioration of Antibiotic-Associated Diarrhea. Nature Communications, 13, Article No. 2117. https://doi.org/10.1038/s41467-022-29672-z |
[24] |
Ma, M., Gu, M., Zhang, S. and Yuan, Y. (2024) Effect of Tea Polyphenols on Chitosan Packaging for Food Preservation: Physicochemical Properties, Bioactivity, and Nutrition. International Journal of Biological Macromolecules, 259, Article ID: 129267. https://doi.org/10.1016/j.ijbiomac.2024.129267 |
[25] |
Zuo, A., Dong, H., Yu, Y., Shu, Q., Zheng, L., Yu, X., et al. (2018) The Antityrosinase and Antioxidant Activities of Flavonoids Dominated by the Number and Location of Phenolic Hydroxyl Groups. Chinese Medicine, 13, Article No. 51. https://doi.org/10.1186/s13020-018-0206-9 |
[26] |
Zeng, Y., Song, J., Zhang, M., Wang, H., Zhang, Y. and Suo, H. (2020) Comparison of in vitro and in Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants, 9, Article 732. https://doi.org/10.3390/antiox9080732 |
[27] |
Zhang, Y., Zhang, Z. and Wang, R. (2020) Protective Mechanisms of Quercetin against Myocardial Ischemia Reperfusion Injury. Frontiers in Physiology, 11, Article 956. https://doi.org/10.3389/fphys.2020.00956 |
[28] |
Simunkova, M., Barbierikova, Z., Jomova, K., Hudecova, L., Lauro, P., Alwasel, S.H., et al. (2021) Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. International Journal of Molecular Sciences, 22, Article 1619. https://doi.org/10.3390/ijms22041619 |
[29] |
Xiang, J., Zhang, M., Apea-Bah, F.B. and Beta, T. (2019) Hydroxycinnamic Acid Amide (HCAA) Derivatives, Flavonoid C-Glycosides, Phenolic Acids and Antioxidant Properties of Foxtail Millet. Food Chemistry, 295, 214-223. https://doi.org/10.1016/j.foodchem.2019.05.058 |
[30] |
Ancion, A., Tridetti, J., Nguyen Trung, M., Oury, C. and Lancellotti, P. (2019) A Review of the Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of Angiotensin-Converting Enzyme Inhibitors: Focus on Perindopril. Cardiology and Therapy, 8, 179-191. https://doi.org/10.1007/s40119-019-00150-w |
[31] |
Xie, K., Liu, L., Su, C., Huang, X., Wu, B., Liu, R., et al. (2020) Low Antioxidant Status of Serum Uric Acid, Bilirubin, Albumin, and Creatinine in Patients with Benign Paroxysmal Positional Vertigo. Frontiers in Neurology, 11, Article 601695. https://doi.org/10.3389/fneur.2020.601695 |
[32] |
Nie, M., Zhang, Z., Liu, C., Li, D., Huang, W., Liu, C., et al. (2019) Hesperetin and Hesperidin Improved β-Carotene Incorporation Efficiency, Intestinal Cell Uptake, and Retinoid Concentrations in Tissues. Journal of Agricultural and Food Chemistry, 67, 3363-3371. https://doi.org/10.1021/acs.jafc.9b00551 |