[1] |
余沛峰, 梁英, 王康旺, 等. 拓扑量子材料用于能源转化与存储的研究进展[J]. 材料研究与应用, 2023, 17(5): 886-901. |
[2] |
乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[3] |
Li, X. and Zhi, L. (2018) Graphene Hybridization for Energy Storage Applications. Chemical Society Reviews, 47, 3189-3216. https://doi.org/10.1039/c7cs00871f |
[4] |
Sun, K., Hua, F., Cui, S., Zhu, Y., Peng, H. and Ma, G. (2021) An Asymmetric Supercapacitor Based on Controllable WO3 Nanorod Bundle and Alfalfa-Derived Porous Carbon. RSC Advances, 11, 37631-37642. https://doi.org/10.1039/d1ra04788d |
[5] |
Zhang, Y., Pan, H., Zhou, Q., Liu, K., Ma, W. and Fan, S. (2023) Biomass-Derived Carbon for Supercapacitors Electrodes—A Review of Recent Advances. Inorganic Chemistry Communications, 153, Article 110768. https://doi.org/10.1016/j.inoche.2023.110768 |
[6] |
范瑞博, 陈亮, 薛北辰, 等. 生物质基工程生物炭材料应用于超级电容器: 现状、挑战及前景[J/OL]. 能源环境保护, 1-12. https://doi.org/10.20078/j.eep.20240308, 2024-08-25. |
[7] |
Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E. and Guo, Z. (2015) Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 5, 755-777. https://doi.org/10.3390/nano5020755 |
[8] |
Luo, B., Liu, S. and Zhi, L. (2011) Chemical Approaches toward Graphene-Based Nanomaterials and Their Applications in Energy-Related Areas. Small, 8, 630-646. https://doi.org/10.1002/smll.201101396 |
[9] |
Meher, S.K., Justin, P. and Ranga Rao, G. (2011) Nanoscale Morphology Dependent Pseudocapacitance of NiO: Influence of Intercalating Anions during Synthesis. Nanoscale, 3, 683-692. https://doi.org/10.1039/c0nr00555j |
[10] |
Balakrishnan, K., Kumar, M. and Angaiah, S. (2014) Synthesis of Polythiophene and Its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 938, 151-157. https://doi.org/10.4028/www.scientific.net/amr.938.151 |
[11] |
Zhang, L.L. and Zhao, X.S. (2009) Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38, 2520-2531. https://doi.org/10.1039/b813846j |
[12] |
张帅杰. 基于木纤维碳功能材料的超级电容器电化学性能研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2024. |
[13] |
Chen, X., Paul, R. and Dai, L. (2017) Carbon-Based Supercapacitors for Efficient Energy Storage. National Science Review, 4, 453-489. https://doi.org/10.1093/nsr/nwx009 |
[14] |
高玉双, 段泉滨, 赵程, 等. 双电层材料下的柔性超级电容器电极分析[J]. 科技创新导报, 2019, 16(29): 76-77. |
[15] |
程锦. 超级电容器及其电极材料研究进展[J]. 电池工业, 2018, 22(5): 274-279. |
[16] |
Frackowiak, E. (2007) Carbon Materials for Supercapacitor Application. Physical Chemistry Chemical Physics, 9, 1774-1785. https://doi.org/10.1039/b618139m |
[17] |
张哲. 镍基电极材料的制备及超级电容器性能研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2024. |
[18] |
Sayyed, S.G., Mahadik, M.A., Shaikh, A.V., Jang, J.S. and Pathan, H.M. (2019) Nano-Metal Oxide Based Supercapacitor Via Electrochemical Deposition. ES Energy & Environment, 3, 25-44. https://doi.org/10.30919/esee8c211 |
[19] |
董韬文, 张伟, 郑伟涛. 赝电容的起源和本体相赝电容的实现[J]. 硅酸盐学报, 2024, 52(2): 442-453. |
[20] |
Zhu, Q., Zhao, D., Cheng, M., Zhou, J., Owusu, K.A., Mai, L., et al. (2019) A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 9, Article 1901081. https://doi.org/10.1002/aenm.201901081 |
[21] |
He, S., Guo, F., Yang, Q., Mi, H., Li, J., Yang, N., et al. (2021) Design and Fabrication of Hierarchical NiCoP-MOF Heterostructure with Enhanced Pseudocapacitive Properties. Small, 17, Article 2100353. https://doi.org/10.1002/smll.202100353 |
[22] |
Wang, Q., Luo, Y., Hou, R., Zaman, S., Qi, K., Liu, H., et al. (2019) Redox Tuning in Crystalline and Electronic Structure of Bimetal-Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 31, Article 1905744. https://doi.org/10.1002/adma.201905744 |
[23] |
Ye, J., Zhai, X., Chen, L., Guo, W., Gu, T., Shi, Y., et al. (2021) Oxygen Vacancies Enriched Nickel Cobalt Based Nanoflower Cathodes: Mechanism and Application of the Enhanced Energy Storage. Journal of Energy Chemistry, 62, 252-261. https://doi.org/10.1016/j.jechem.2021.03.030 |
[24] |
洪广言. 稀土化学导论[J]. 分析化学, 2014, 42(8): 1182. |
[25] |
Han, D., Jing, X., Wang, J., Yang, P., Song, D. and Liu, J. (2012) Porous Lanthanum Doped NiO Microspheres for Supercapacitor Application. Journal of Electroanalytical Chemistry, 682, 37-44. https://doi.org/10.1016/j.jelechem.2012.06.016 |
[26] |
Shao, G., Yao, Y., Zhang, S. and He, P. (2009) Supercapacitor Characteristic of La-Doped Ni(OH)2 Prepared by Electrode-Position. Rare Metals, 28, 132-136. https://doi.org/10.1007/s12598-009-0026-2 |
[27] |
Chakrabarty, N., Char, M., Krishnamurthy, S. and Chakraborty, A.K. (2021) Influence of La3+ Induced Defects on MnO2-Carbon Nanotube Hybrid Electrodes for Supercapacitors. Materials Advances, 2, 366-375. https://doi.org/10.1039/d0ma00696c |
[28] |
Zhang, Y., Zhang, G. and Du, T. (2011) Development of Potassium Ferrate(VI) Cathode Material Stabilized with Yttria Doped Zirconia Coating for Alkaline Super-Iron Battery. Electrochimica Acta, 56, 1159-1163. https://doi.org/10.1016/j.electacta.2010.10.027 |
[29] |
Zhang, Y. and Zhai, Y. (2016) Preparation of Y-Doped ZrO2 Coatings on MnO2 Electrodes and Their Effect on Electrochemical Performance for MnO2 Electrochemical Supercapacitors. RSC Advances, 6, 1750-1759. https://doi.org/10.1039/c5ra20543c |
[30] |
Arunachalam, S., Kirubasankar, B., Pan, D., Liu, H., Yan, C., Guo, Z., et al. (2020) Research Progress in Rare Earths and Their Composites Based Electrode Materials for Supercapacitors. Green Energy & Environment, 5, 259-273. https://doi.org/10.1016/j.gee.2020.07.021 |
[31] |
Yadav, A.A., Lokhande, A.C., Kim, J.H. and Lokhande, C.D. (2016) Supercapacitive Activities of Porous La2O3 Symmetric Flexible Solid-State Device by Hydrothermal Method. International Journal of Hydrogen Energy, 41, 18311-18319. https://doi.org/10.1016/j.ijhydene.2016.08.028 |
[32] |
Arunachalam, S., Kirubasankar, B., Murugadoss, V., Vellasamy, D. and Angaiah, S. (2018) Facile Synthesis of Electrostatically Anchored Nd(OH)3 Nanorods onto Graphene Nanosheets as a High Capacitance Electrode Material for Supercapacitors. New Journal of Chemistry, 42, 2923-2932. https://doi.org/10.1039/c7nj04335j |
[33] |
Gong, Q., Li, Y., Huang, H., Zhang, J., Gao, T. and Zhou, G. (2018) Shape-Controlled Synthesis of Ni-CeO2@PANI Nanocomposites and Their Synergetic Effects on Supercapacitors. Chemical Engineering Journal, 344, 290-298. https://doi.org/10.1016/j.cej.2018.03.079 |
[34] |
Maheswari, N. and Muralidharan, G. (2015) Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes. Energy & Fuels, 29, 8246-8253. https://doi.org/10.1021/acs.energyfuels.5b02144 |
[35] |
Wang, H., Liang, M., Zhang, X., Duan, D., Shi, W., Song, Y., et al. (2018) Novel CeO2 Nanorod Framework Prepared by Dealloying for Supercapacitors Applications. Ionics, 24, 2063-2072. https://doi.org/10.1007/s11581-018-2443-4 |
[36] |
Asaithambi, S., Sakthivel, P., Karuppaiah, M., Yuvakkumar, R., Balamurugan, K., Ahamad, T., et al. (2021) Preparation of Fe-SnO2@CeO2 Nanocomposite Electrode for Asymmetric Supercapacitor Device Performance Analysis. Journal of Energy Storage, 36, Article 102402. https://doi.org/10.1016/j.est.2021.102402 |
[37] |
Wang, X., Yan, H., Zhang, J., Hong, X., Yang, S., Wang, C., et al. (2019) Stamen-Petal-Like CeO2/NiMn Layered Double Hydroxides Composite for High-Rate-Performance Supercapacitor. Journal of Alloys and Compounds, 810, Article 151911. https://doi.org/10.1016/j.jallcom.2019.151911 |
[38] |
Mazloum-Ardakani, M., Sabaghian, F., Yavari, M., Ebady, A. and Sahraie, N. (2020) Enhance the Performance of Iron Oxide Nanoparticles in Supercapacitor Applications through Internal Contact of Α-Fe2O3@CeO2 Core-Shell. Journal of Alloys and Compounds, 819, Article 152949. https://doi.org/10.1016/j.jallcom.2019.152949 |
[39] |
Paravannoor, A., Augustine, C.A. and Ponpandian, N. (2020) Rare Earth Nanostructures Based on Pro/CNT Composites as Potential Electrodes for an Asymmetric Pseudocapacitor Cell. Journal of Rare Earths, 38, 625-632. https://doi.org/10.1016/j.jre.2019.07.017 |
[40] |
Subasri, A., Balakrishnan, K., Nagarajan, E.R., Devadoss, V. and Subramania, A. (2018) Development of 2D La(OH)3 /Graphene Nanohybrid by a Facile Solvothermal Reduction Process for High-Performance Supercapacitors. Electrochimica Acta, 281, 329-337. https://doi.org/10.1016/j.electacta.2018.05.142 |
[41] |
Wang, Y., Guo, C.X., Liu, J., Chen, T., Yang, H. and Li, C.M. (2011) CeO2 Nanoparticles/Graphene Nanocomposite-Based High Performance Supercapacitor. Dalton Transactions, 40, 6388-6391. https://doi.org/10.1039/c1dt10397k |
[42] |
Luo, Y., Yang, T., Zhao, Q. and Zhang, M. (2017) CeO2/CNTs Hybrid with High Performance as Electrode Materials for Supercapacitor. Journal of Alloys and Compounds, 729, 64-70. https://doi.org/10.1016/j.jallcom.2017.09.165 |
[43] |
Dezfuli, A.S., Ganjali, M.R., Naderi, H.R. and Norouzi, P. (2015) A High Performance Supercapacitor Based on a Ceria/Graphene Nanocomposite Synthesized by a Facile Sonochemical Method. RSC Advances, 5, 46050-46058. https://doi.org/10.1039/c5ra02957k |
[44] |
Aravinda, L.S., Udaya Bhat, K. and Ramachandra Bhat, B. (2013) Nano CeO2/Activated Carbon Based Composite Electrodes for High Performance Supercapacitor. Materials Letters, 112, 158-161. https://doi.org/10.1016/j.matlet.2013.09.009 |
[45] |
Padmanathan, N. and Selladurai, S. (2014) Shape Controlled Synthesis of CeO2 Nanostructures for High Performance Supercapacitor Electrodes. RSC Advances, 4, 6527-6534. https://doi.org/10.1039/c3ra43339k |
[46] |
Ji, Z., Shen, X., Zhou, H. and Chen, K. (2015) Facile Synthesis of Reduced Graphene Oxide/CeO2 Nanocomposites and Their Application in Supercapacitors. Ceramics International, 41, 8710-8716. https://doi.org/10.1016/j.ceramint.2015.03.089 |
[47] |
Deng, D., Chen, N., Xiao, X., Du, S. and Wang, Y. (2016) Electrochemical Performance of CeO2 Nanoparticle-Decorated Graphene Oxide as an Electrode Material for Supercapacitor. Ionics, 23, 121-129. https://doi.org/10.1007/s11581-016-1812-0 |
[48] |
Naderi, H.R., Ganjali, M.R. and Dezfuli, A.S. (2017) High-Performance Supercapacitor Based on Reduced Graphene Oxide Decorated with Europium Oxide Nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 3035-3044. https://doi.org/10.1007/s10854-017-8234-2 |
[49] |
Patil, S.J., Kumbhar, V.S., Patil, B.H., Bulakhe, R.N. and Lokhande, C.D. (2014) Chemical Synthesis of Α-La2S3 Thin Film as an Advanced Electrode Material for Supercapacitor Application. Journal of Alloys and Compounds, 611, 191-196. https://doi.org/10.1016/j.jallcom.2014.04.203 |
[50] |
Kumbhar, V.S., Lokhande, A.C., Gaikwad, N.S. and Lokhande, C.D. (2015) Facile Synthesis of Sm2S3 Diffused Nanoflakes and Their Pseudocapactive Behavior. Ceramics International, 41, 5758-5764. https://doi.org/10.1016/j.ceramint.2015.01.004 |
[51] |
Bibi, N., Xia, Y., Ahmed, S., Zhu, Y., Zhang, S. and Iqbal, A. (2018) Highly Stable Mesoporous CeO2/CeS2 Nanocomposite as Electrode Material with Improved Supercapacitor Electrochemical Performance. Ceramics International, 44, 22262-22270. https://doi.org/10.1016/j.ceramint.2018.08.348 |