[1] |
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789. https://doi.org/10.1002/ijc.33588 |
[2] |
Waks, A.G. and Winer, E.P. (2019) Breast Cancer Treatment: A Review. JAMA, 321, 288-300. https://doi.org/10.1001/jama.2018.19323 |
[3] |
Wuerstlein, R. and Harbeck, N. (2017) Neoadjuvant Therapy for HER2-Positive Breast Cancer. Reviews on Recent Clinical Trials, 12, 81-92. https://doi.org/10.2174/1574887112666170202165049 |
[4] |
Tao, J.J., Visvanathan, K. and Wolff, A.C. (2015) Long Term Side Effects of Adjuvant Chemotherapy in Patients with Early Breast Cancer. The Breast, 24, S149-S153. https://doi.org/10.1016/j.breast.2015.07.035 |
[5] |
Musyuni, P., Bai, J., Sheikh, A., Vasanthan, K.S., Jain, G.K., Abourehab, M.A.S., et al. (2022) Precision Medicine: Ray of Hope in Overcoming Cancer Multidrug Resistance. Drug Resistance Updates, 65, Article ID: 100889. https://doi.org/10.1016/j.drup.2022.100889 |
[6] |
Zhu, X., Wong, I.L.K., Chan, K., Cui, J., Law, M.C., Chong, T.C., et al. (2019) Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors. Journal of Medicinal Chemistry, 62, 8578-8608. https://doi.org/10.1021/acs.jmedchem.9b00963 |
[7] |
Dias, D.A., Urban, S. and Roessner, U. (2012) A Historical Overview of Natural Products in Drug Discovery. Metabolites, 2, 303-336. https://doi.org/10.3390/metabo2020303 |
[8] |
Xue, Y., Di, J., Luo, Y., Cheng, K., Wei, X. and Shi, Z. (2014) Resveratrol Oligomers for the Prevention and Treatment of Cancers. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 765832. https://doi.org/10.1155/2014/765832 |
[9] |
Galiniak, S., Aebisher, D. and Bartusik-Aebisher, D. (2019) Health Benefits of Resveratrol Administration. Acta Biochimica Polonica, 66, 13-21. https://doi.org/10.18388/abp.2018_2749 |
[10] |
Nawaz, W., Zhou, Z., Deng, S., Ma, X., Ma, X., Li, C., et al. (2017) Therapeutic Versatility of Resveratrol Derivatives. Nutrients, 9, Article No. 1188. https://doi.org/10.3390/nu9111188 |
[11] |
Mrkus, L., Batinić, J., Bjeliš, N. and Jakas, A. (2018) Synthesis and Biological Evaluation of Quercetin and Resveratrol Peptidyl Derivatives as Potential Anticancer and Antioxidant Agents. Amino Acids, 51, 319-329. https://doi.org/10.1007/s00726-018-2668-6 |
[12] |
Oh, W.Y. and Shahidi, F. (2018) Antioxidant Activity of Resveratrol Ester Derivatives in Food and Biological Model Systems. Food Chemistry, 261, 267-273. https://doi.org/10.1016/j.foodchem.2018.03.085 |
[13] |
You, S., Qian, J., Sun, C., Zhang, H., Ye, S., Chen, T., et al. (2018) An Aza Resveratrol-Chalcone Derivative 6b Protects Mice against Diabetic Cardiomyopathy by Alleviating Inflammation and Oxidative Stress. Journal of Cellular and Molecular Medicine, 22, 1931-1943. https://doi.org/10.1111/jcmm.13477 |
[14] |
Tang, Y., Shi, C., Yang, H., Cai, P., Liu, Q., Yang, X., et al. (2019) Synthesis and Evaluation of Isoprenylation-Resveratrol Dimer Derivatives against Alzheimer’s Disease. European Journal of Medicinal Chemistry, 163, 307-319. https://doi.org/10.1016/j.ejmech.2018.11.040 |
[15] |
Yang, H.J., Ren, Y.J., Du, C., Jin, L., Li, R. and Xie, N. (2018) Synthesis and Anticoagulant Bioactivity of Heterocyclic Derivatives of Resveratrol. Chemistry of Natural Compounds, 54, 864-868. https://doi.org/10.1007/s10600-018-2500-2 |
[16] |
Wu, H., Chen, L., Zhu, F., Han, X., Sun, L. and Chen, K. (2019) The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins, 11, Article No. 731. https://doi.org/10.3390/toxins11120731 |
[17] |
Zhang, W., Jiang, H., Chen, Y. and Ren, F. (2019) Resveratrol Chemosensitizes Adriamycin-Resistant Breast Cancer Cells by Modulating Mir-122-5p. Journal of Cellular Biochemistry, 120, 16283-16292. https://doi.org/10.1002/jcb.28910 |
[18] |
Hsieh, T., Wong, C., John Bennett, D. and Wu, J.M. (2011) Regulation of P53 and Cell Proliferation by Resveratrol and Its Derivatives in Breast Cancer Cells: An in Silico and Biochemical Approach Targeting Integrin Αvβ3. International Journal of Cancer, 129, 2732-2743. https://doi.org/10.1002/ijc.25930 |
[19] |
Giménez‐Bastida, J.A., Ávila‐Gálvez, M.Á., Espín, J.C. and González‐Sarrías, A. (2019) Conjugated Physiological Resveratrol Metabolites Induce Senescence in Breast Cancer Cells: Role of p53/p21 and p16/Rb Pathways, and ABC Transporters. Molecular Nutrition & Food Research, 63, Article ID: 1900629. https://doi.org/10.1002/mnfr.201900629 |
[20] |
Bartolacci, C., Andreani, C., Amici, A. and Marchini, C. (2018) Walking a Tightrope: A Perspective of Resveratrol Effects on Breast Cancer. Current Protein & Peptide Science, 19, 311-322. https://doi.org/10.2174/1389203718666170111115914 |
[21] |
He, X., Wang, Y., Zhu, J., Orloff, M. and Eng, C. (2011) Resveratrol Enhances the Anti-Tumor Activity of the mTOR Inhibitor Rapamycin in Multiple Breast Cancer Cell Lines Mainly by Suppressing Rapamycin-Induced AKT Signaling. Cancer Letters, 301, 168-176. https://doi.org/10.1016/j.canlet.2010.11.012 |
[22] |
Khan, A., Aljarbou, A.N., Aldebasi, Y.H., Faisal, S.M. and Khan, M.A. (2014) Resveratrol Suppresses the Proliferation of Breast Cancer Cells by Inhibiting Fatty Acid Synthase Signaling Pathway. Cancer Epidemiology, 38, 765-772. https://doi.org/10.1016/j.canep.2014.09.006 |
[23] |
Mohapatra, P., Satapathy, S.R., Das, D., Siddharth, S., Choudhuri, T. and Kundu, C.N. (2014) Resveratrol Mediated Cell Death in Cigarette Smoke Transformed Breast Epithelial Cells Is through Induction of p21Waf1/Cip1 and Inhibition of Long Patch Base Excision Repair Pathway. Toxicology and Applied Pharmacology, 275, 221-231. https://doi.org/10.1016/j.taap.2014.01.011 |
[24] |
Zhang, X., Wu, F., Shi, S., Chen, P., Jin, M. and Zheng, N. (2024) Anti-Cancer Activity and Mechanism of Resveratrol against Triple-Negative Breast Cancer. Journal of Biobased Materials and Bioenergy, 18, 863-867. https://doi.org/10.1166/jbmb.2024.2435 |
[25] |
Vergara, D., Valente, C.M., Tinelli, A., Siciliano, C., Lorusso, V., Acierno, R., et al. (2011) Resveratrol Inhibits the Epidermal Growth Factor-Induced Epithelial Mesenchymal Transition in MCF-7 Cells. Cancer Letters, 310, 1-8. https://doi.org/10.1016/j.canlet.2011.04.009 |
[26] |
Hu, C., Liu, Y., Teng, M., Jiao, K., Zhen, J., Wu, M., et al. (2019) Resveratrol Inhibits the Proliferation of Estrogen Receptor-Positive Breast Cancer Cells by Suppressing EZH2 through the Modulation of ERK1/2 Signaling. Cell Biology and Toxicology, 35, 445-456. https://doi.org/10.1007/s10565-019-09471-x |
[27] |
Vinod, B.S., Nair, H.H., Vijayakurup, V., Shabna, A., Shah, S., Krishna, A., et al. (2015) Resveratrol Chemosensitizes HER-2-Overexpressing Breast Cancer Cells to Docetaxel Chemoresistance by Inhibiting Docetaxel-Mediated Activation of Her-2-Akt Axis. Cell Death Discovery, 1, Article No. 15061. https://doi.org/10.1038/cddiscovery.2015.61 |
[28] |
Pozo‐Guisado, E., Merino, J.M., Mulero‐Navarro, S., Lorenzo‐Benayas, M.J., Centeno, F., Alvarez‐Barrientos, A., et al. (2005) Resveratrol‐Induced Apoptosis in MCF‐7 Human Breast Cancer Cells Involves a Caspase‐Independent Mechanism with Downregulation of Bcl-2 and NF‐κB. International Journal of Cancer, 115, 74-84. https://doi.org/10.1002/ijc.20856 |
[29] |
Kohandel, Z., Farkhondeh, T., Aschner, M., Pourbagher-Shahri, A.M. and Samarghandian, S. (2021) STAT3 Pathway as a Molecular Target for Resveratrol in Breast Cancer Treatment. Cancer Cell International, 21, Article No. 468. https://doi.org/10.1186/s12935-021-02179-1 |
[30] |
Dong, J., Yang, W., Han, J., Cheng, R. and Li, L. (2020) Effects of Notch Signaling Components from Breast Cancer Cells Treated in Culture with Resveratrol. Research in Veterinary Science, 132, 369-378. https://doi.org/10.1016/j.rvsc.2020.07.017 |
[31] |
Schmidt, B., Ferreira, C., Alves Passos, C.L., Silva, J.L. and Fialho, E. (2020) Resveratrol, Curcumin and Piperine Alter Human Glyoxalase 1 in MCF-7 Breast Cancer Cells. International Journal of Molecular Sciences, 21, Article No. 5244. https://doi.org/10.3390/ijms21155244 |
[32] |
Amini, P. (2021) Resveratrol Induces Apoptosis and Attenuates Proliferation of MCF-7 Cells in Combination with Radiation and Hyperthermia. Current Molecular Medicine, 21, 142-150. https://doi.org/10.2174/18755666mta2pode0z |
[33] |
Liang, Z., Wan, Y., Zhu, D., Wang, M., Jiang, H., Huang, D., et al. (2021) Resveratrol Mediates the Apoptosis of Triple Negative Breast Cancer Cells by Reducing POLD1 Expression. Frontiers in Oncology, 11, Article ID: 569295. https://doi.org/10.3389/fonc.2021.569295 |
[34] |
Alkhalaf, M., El-Mowafy, A., Renno, W., Rachid, O., Ali, A. and Al-Attyiah, R. (2008) Resveratrol-Induced Apoptosis in Human Breast Cancer Cells Is Mediated Primarily through the Caspase-3-Dependent Pathway. Archives of Medical Research, 39, 162-168. https://doi.org/10.1016/j.arcmed.2007.09.003 |
[35] |
Mirzapur, P., Khazaei, M.R., Moradi, M.T. and Khazaei, M. (2018) Apoptosis Induction in Human Breast Cancer Cell Lines by Synergic Effect of Raloxifene and Resveratrol through Increasing Proapoptotic Genes. Life Sciences, 205, 45-53. https://doi.org/10.1016/j.lfs.2018.04.035 |
[36] |
Ferraz da Costa, D.C., Campos, N.P.C., Santos, R.A., Guedes-da-Silva, F.H., Martins-Dinis, M.M.D.C., Zanphorlin, L., et al. (2018) Resveratrol Prevents P53 Aggregation in Vitro and in Breast Cancer Cells. Oncotarget, 9, 29112-29122. https://doi.org/10.18632/oncotarget.25631 |
[37] |
Costa, P.S.d., Ramos, P.S., Ferreira, C., Silva, J.L., El-Bacha, T. and Fialho, E. (2021) Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells Is Associated with CK2 Inhibition. Nutrition and Cancer, 74, 2142-2151. https://doi.org/10.1080/01635581.2021.1977834 |
[38] |
Cheng, T., Wang, C., Lu, Q., Cao, Y., Yu, W., Li, W., et al. (2022) Metformin Inhibits the Tumor-Promoting Effect of Low-Dose Resveratrol, and Enhances the Anti-Tumor Activity of High-Dose Resveratrol by Increasing Its Reducibility in Triple Negative Breast Cancer. Free Radical Biology and Medicine, 180, 108-120. https://doi.org/10.1016/j.freeradbiomed.2022.01.010 |
[39] |
Kotha, A., Sekharam, M., Cilenti, L., Siddiquee, K., Khaled, A., Zervos, A.S., et al. (2006) Resveratrol Inhibits Src and Stat3 Signaling and Induces the Apoptosis of Malignant Cells Containing Activated Stat3 Protein. Molecular Cancer Therapeutics, 5, 621-629. https://doi.org/10.1158/1535-7163.mct-05-0268 |
[40] |
Singh, S.S., Vats, S., Chia, A.Y., Tan, T.Z., Deng, S., Ong, M.S., et al. (2017) Dual Role of Autophagy in Hallmarks of Cancer. Oncogene, 37, 1142-1158. https://doi.org/10.1038/s41388-017-0046-6 |
[41] |
Eskelinen, E. (2011) The Dual Role of Autophagy in Cancer. Current Opinion in Pharmacology, 11, 294-300. https://doi.org/10.1016/j.coph.2011.03.009 |
[42] |
Wang, J., Huang, P., Pan, X., Xia, C., Zhang, H., Zhao, H., et al. (2022) Resveratrol Reverses TGF‐β1‐Mediated Invasion and Metastasis of Breast Cancer Cells via the SIRT3/AMPK/Autophagy Signal Axis. Phytotherapy Research, 37, 211-230. https://doi.org/10.1002/ptr.7608 |
[43] |
Pai Bellare, G. and Sankar Patro, B. (2022) Resveratrol Sensitizes Breast Cancer to PARP Inhibitor, Talazoparib through Dual Inhibition of AKT and Autophagy Flux. Biochemical Pharmacology, 199, Article ID: 115024. https://doi.org/10.1016/j.bcp.2022.115024 |
[44] |
Fatehi, R., Rashedinia, M., Akbarizadeh, A.R., Zamani, M. and Firouzabadi, N. (2023) Metformin Enhances Anti-Cancer Properties of Resveratrol in MCF-7 Breast Cancer Cells via Induction of Apoptosis, Autophagy and Alteration in Cell Cycle Distribution. Biochemical and Biophysical Research Communications, 644, 130-139. https://doi.org/10.1016/j.bbrc.2022.12.069 |
[45] |
Zhang, J., Tian, X. and Xing, J. (2016) Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. Journal of Clinical Medicine, 5, Article No. 41. https://doi.org/10.3390/jcm5040041 |
[46] |
Sun, Y., Zhou, Q., Lu, Y., Zhang, H., Chen, Q., Zhao, M., et al. (2019) Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules, 24, Article No. 1131. https://doi.org/10.3390/molecules24061131 |
[47] |
Yar Saglam, A.S., Kayhan, H., Alp, E. and Onen, H.I. (2021) Resveratrol Enhances the Sensitivity of FL118 in Triple-Negative Breast Cancer Cell Lines via Suppressing Epithelial to Mesenchymal Transition. Molecular Biology Reports, 48, 475-489. https://doi.org/10.1007/s11033-020-06078-y |
[48] |
Tang, F., Su, Y., Chen, N., Hsieh, H. and Chen, K. (2008) Resveratrol Inhibits Migration and Invasion of Human Breast‐cancer Cells. Molecular Nutrition & Food Research, 52, 683-691. https://doi.org/10.1002/mnfr.200700325 |
[49] |
Tsai, J., Hsu, L., Lin, C., Hong, H., Pan, M., Way, T., et al. (2013) 3,5,4’-Trimethoxystilbene, a Natural Methoxylated Analog of Resveratrol, Inhibits Breast Cancer Cell Invasiveness by Downregulation of PI3K/Akt and Wnt/β-Catenin Signaling Cascades and Reversal of Epithelial-Mesenchymal Transition. Toxicology and Applied Pharmacology, 272, 746-756. https://doi.org/10.1016/j.taap.2013.07.019 |
[50] |
Lacerda-Abreu, M.A., Russo-Abrahão, T. and Meyer-Fernandes, J.R. (2021) Resveratrol Is an Inhibitor of Sodium-Dependent Inorganic Phosphate Transport in Triple-Negative MDA-MB-231 Breast Cancer Cells. Cell Biology International, 45, 1768-1775. https://doi.org/10.1002/cbin.11616 |
[51] |
Gomez, L.S., Zancan, P., Marcondes, M.C., Ramos-Santos, L., Meyer-Fernandes, J.R., Sola-Penna, M., et al. (2013) Resveratrol Decreases Breast Cancer Cell Viability and Glucose Metabolism by Inhibiting 6-Phosphofructo-1-Kinase. Biochimie, 95, 1336-1343. https://doi.org/10.1016/j.biochi.2013.02.013 |
[52] |
Gao, Y., Wang, Y., Wang, B., et al. (2024) Mechanism of Action of Resveratrol Affecting the Biological Function of Breast Cancer through the Glycolytic Pathway. |
[53] |
Gomes, L., Viana, L., Silva, J.L., Mermelstein, C., Atella, G. and Fialho, E. (2020) Resveratrol Modifies Lipid Composition of Two Cancer Cell Lines. BioMed Research International, 2020, Article ID: 5393041. https://doi.org/10.1155/2020/5393041 |
[54] |
Yang, M., Sun, Y., Zhou, W., Xie, X., Zhou, Q., Lu, Y., et al. (2021) Resveratrol Enhances Inhibition Effects of Cisplatin on Cell Migration and Invasion and Tumor Growth in Breast Cancer MDA-MB-231 Cell Models in Vivo and in Vitro. Molecules, 26, Article No. 2204. https://doi.org/10.3390/molecules26082204 |
[55] |
Vargas, J.E., Puga, R., Lenz, G., Trindade, C. and Filippi-Chiela, E. (2020) Cellular Mechanisms Triggered by the Cotreatment of Resveratrol and Doxorubicin in Breast Cancer: A Translational in Vitro-in Silico Model. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5432651. https://doi.org/10.1155/2020/5432651 |
[56] |
Al-jubori, A.A., Sulaiman, G.M., Tawfeeq, A.T., Mohammed, H.A., Khan, R.A. and Mohammed, S.A.A. (2021) Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment. Pharmaceutics, 13, Article No. 1098. https://doi.org/10.3390/pharmaceutics13071098 |
[57] |
da Costa Araldi, I.C., Bordin, F.P.R., Cadoná, F.C., Barbisan, F., Azzolin, V.F., Teixeira, C.F., et al. (2018) The in Vitro Radiosensitizer Potential of Resveratrol on MCF-7 Breast Cancer Cells. Chemico-Biological Interactions, 282, 85-92. https://doi.org/10.1016/j.cbi.2018.01.013 |
[58] |
Mondal, A. and Bennett, L.L. (2016) Resveratrol Enhances the Efficacy of Sorafenib Mediated Apoptosis in Human Breast Cancer MCF7 Cells through ROS, Cell Cycle Inhibition, Caspase 3 and PARP Cleavage. Biomedicine & Pharmacotherapy, 84, 1906-1914. https://doi.org/10.1016/j.biopha.2016.10.096 |
[59] |
Gao, Y. and Tollefsbol, T.O. (2018) Combinational Proanthocyanidins and Resveratrol Synergistically Inhibit Human Breast Cancer Cells and Impact Epigenetic-Mediating Machinery. International Journal of Molecular Sciences, 19, Article No. 2204. https://doi.org/10.3390/ijms19082204 |
[60] |
Deus, C.M., Serafim, T.L., Magalhães-Novais, S., Vilaça, A., Moreira, A.C., Sardão, V.A., et al. (2016) Sirtuin 1-Dependent Resveratrol Cytotoxicity and Pro-Differentiation Activity on Breast Cancer Cells. Archives of Toxicology, 91, 1261-1278. https://doi.org/10.1007/s00204-016-1784-x |
[61] |
Suh, J., Kim, D. and Surh, Y. (2018) Resveratrol Suppresses Migration, Invasion and Stemness of Human Breast Cancer Cells by Interfering with Tumor-Stromal Crosstalk. Archives of Biochemistry and Biophysics, 643, 62-71. https://doi.org/10.1016/j.abb.2018.02.011 |
[62] |
Kurzava Kendall, L., Ma, Y., Yang, T., Lubecka, K. and Stefanska, B. (2024) Epigenetic Effects of Resveratrol on Oncogenic Signaling in Breast Cancer. Nutrients, 16, Article No. 699. https://doi.org/10.3390/nu16050699 |
[63] |
Han, X., Zhao, N., Zhu, W., Wang, J., Liu, B. and Teng, Y. (2021) Resveratrol Attenuates TNBC Lung Metastasis by Down-Regulating PD-1 Expression on Pulmonary T Cells and Converting Macrophages to M1 Phenotype in a Murine Tumor Model. Cellular Immunology, 368, Article ID: 104423. https://doi.org/10.1016/j.cellimm.2021.104423 |
[64] |
Chen, K., Chen, C., Chang, Y. and Chang, M. (2019) Resveratrol Induced Premature Senescence and Inhibited Epithelial-Mesenchymal Transition of Cancer Cells via Induction of Tumor Suppressor Rad9. PLOS ONE, 14, e0219317. https://doi.org/10.1371/journal.pone.0219317 |
[65] |
Chen, J., Bai, J. and Yang, K. (2018) Effect of Resveratrol on Doxorubicin Resistance in Breast Neoplasm Cells by Modulating Pi3k/Akt Signaling Pathway. IUBMB Life, 70, 491-500. https://doi.org/10.1002/iub.1749 |
[66] |
Lucas, J., Hsieh, T., Halicka, H.D., Darzynkiewicz, Z. and Wu, J. (2018) Upregulation of PD-L1 Expression by Resveratrol and Piceatannol in Breast and Colorectal Cancer Cells Occurs via HDAC3/p300-Mediated NF-κB Signaling. International Journal of Oncology, 53, 1469-1480. https://doi.org/10.3892/ijo.2018.4512 |
[67] |
Cheuk, I.W., Chen, J., Siu, M., Ho, J.C., Lam, S.S., Shin, V.Y., et al. (2021) Resveratrol Enhanced Chemosensitivity by Reversing Macrophage Polarization in Breast Cancer. Clinical and Translational Oncology, 24, 854-863. https://doi.org/10.1007/s12094-021-02731-5 |
[68] |
Sinha, S., Chatterjee, S., Paul, S., Das, B., Dash, S.R., Das, C., et al. (2022) Olaparib Enhances the Resveratrol-Mediated Apoptosis in Breast Cancer Cells by Inhibiting the Homologous Recombination Repair Pathway. Experimental Cell Research, 420, Article ID: 113338. https://doi.org/10.1016/j.yexcr.2022.113338 |
[69] |
Gadag, S., Narayan, R., Nayak, A.S., Catalina Ardila, D., Sant, S., Nayak, Y., et al. (2021) Development and Preclinical Evaluation of Microneedle-Assisted Resveratrol Loaded Nanostructured Lipid Carriers for Localized Delivery to Breast Cancer Therapy. International Journal of Pharmaceutics, 606, Article ID: 120877. https://doi.org/10.1016/j.ijpharm.2021.120877 |
[70] |
Palminteri, M., Dhakar, N.K., Ferraresi, A., Caldera, F., Vidoni, C., Trotta, F., et al. (2021) Cyclodextrin Nanosponge for the GSH-Mediated Delivery of Resveratrol in Human Cancer Cells. Nanotheranostics, 5, 197-212. https://doi.org/10.7150/ntno.53888 |
[71] |
Metawea, O.R.M., Teleb, M., Haiba, N.S., Elzoghby, A.O., Khafaga, A.F., Noreldin, A.E., et al. (2023) Folic Acid-Poly(N-Isopropylacrylamide-Maltodextrin) Nanohydrogels as Novel Thermo-/pH-Responsive Polymer for Resveratrol Breast Cancer Targeted Therapy. European Polymer Journal, 182, Article ID: 111721. https://doi.org/10.1016/j.eurpolymj.2022.111721 |