[1] |
胡钢, 卢志宇, 王乐萌, 等. 基于复杂网络多阶邻域贡献度的节点重要性序结构辨识[J]. 电子学报, 2023, 51(7): 1956-1963. |
[2] |
王淑良, 陈辰, 张建华, 等. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54. |
[3] |
张思超, 梁炜, 苑旭东. 面向工业无线网络的时间同步攻击检测[J]. 物联网学报, 2023, 7(2): 88-97. |
[4] |
吕峥, 孙群, 马京振, 等. 复杂网络视角下的居民地选取方法[J]. 测绘学报, 2023, 52(5): 852-862. |
[5] |
Salavati, C., Abdollahpouri, A. and Manbari, Z. (2019) Ranking Nodes in Complex Networks Based on Local Structure and Improving Closeness Centrality. Neurocomputing, 336, 36-45. https://doi.org/10.1016/j.neucom.2018.04.086 |
[6] |
Kumar, S. and Panda, A. (2021) Identifying Influential Nodes in Weighted Complex Networks Using an Improved Wvoterank Approach. Applied Intelligence, 52, 1838-1852. https://doi.org/10.1007/s10489-021-02403-5 |
[7] |
Ullah, A., Wang, B., Sheng, J., Long, J., Khan, N. and Sun, Z. (2021) Identification of Nodes Influence Based on Global Structure Model in Complex Networks. Scientific Reports, 11, Article No. 6173. https://doi.org/10.1038/s41598-021-84684-x |
[8] |
何欣怡, 马茜, 杨丹丹, 等. 一种基于局部传播路径的复杂网络关键节点识别方法[J]. 现代信息科技, 2023, 7(2): 8-11. |
[9] |
Berahmand, K., Bouyer, A. and Samadi, N. (2018) A New Centrality Measure Based on the Negative and Positive Effects of Clustering Coefficient for Identifying Influential Spreaders in Complex Networks. Chaos, Solitons & Fractals, 110, 41-54. https://doi.org/10.1016/j.chaos.2018.03.014 |
[10] |
唐邵阳. 复杂网络中关键节点识别方法研究[D]: [硕士学位论文]. 郑州: 郑州轻工业大学, 2023. |
[11] |
Restrepo, J.G., Ott, E. and Hunt, B.R. (2006) Characterizing the Dynamical Importance of Network Nodes and Links. Physical Review Letters, 97, Article 094102. https://doi.org/10.1103/physrevlett.97.094102 |
[12] |
Hajarathaiah, K., Enduri, M.K. and Anamalamudi, S. (2022) Finding Influential Nodes in Complex Networks Using Nearest Neighborhood Trust Value. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M. and Sales-Pardo, M., Eds., Complex Networks & Their Applications X, Springer, 253-264. https://doi.org/10.1007/978-3-030-93413-2_22 |
[13] |
Kabziński, J. and Mosiołek, P. (2022) Adaptive, Observer-Based Synchronization of Different Chaotic Systems. Applied Sciences, 12, Article 3394. https://doi.org/10.3390/app12073394 |
[14] |
Khorashadizadeh, S. and Majidi, M. (2018) Synchronization of Two Different Chaotic Systems Using Legendre Polynomials with Applications in Secure Communications. Frontiers of Information Technology & Electronic Engineering, 19, 1180-1190. https://doi.org/10.1631/fitee.1601814 |
[15] |
Gambuzza, L.V., Frasca, M. and Gómez-Gardeñes, J. (2015) Intra-layer Synchronization in Multiplex Networks. EPL (Europhysics Letters), 110, Article 20010. https://doi.org/10.1209/0295-5075/110/20010 |
[16] |
Leyva, I., Sevilla-Escoboza, R., Sendiña-Nadal, I., Gutiérrez, R., Buldú, J.M. and Boccaletti, S. (2017) Inter-layer Synchronization in Non-Identical Multi-Layer Networks. Scientific Reports, 7, Article No. 45475. https://doi.org/10.1038/srep45475 |
[17] |
Kammogne, A.S.T. and Fotsin, H.B. (2015) Robust Adaptive Exponential Synchronization of Two Different Stochastic Perturbed Chaotic Systems with Structural Perturbations. International Journal of Engineering Mathematics, 2015, 1-10. https://doi.org/10.1155/2015/535317 |
[18] |
Sivaranjani, K., Rakkiyappan, R., Cao, J. and Alsaedi, A. (2017) Synchronization of Nonlinear Singularly Perturbed Complex Networks with Uncertain Inner Coupling via Event Triggered Control. Applied Mathematics and Computation, 311, 283-299. https://doi.org/10.1016/j.amc.2017.05.007 |
[19] |
Alimi, A.M., Aouiti, C. and Assali, E.A. (2019) Finite-time and Fixed-Time Synchronization of a Class of Inertial Neural Networks with Multi-Proportional Delays and Its Application to Secure Communication. Neurocomputing, 332, 29-43. https://doi.org/10.1016/j.neucom.2018.11.020 |
[20] |
Boonsatit, N., Rajchakit, G., Sriraman, R., Lim, C.P. and Agarwal, P. (2021) Finite-/Fixed-Time Synchronization of Delayed Clifford-Valued Recurrent Neural Networks. Advances in Difference Equations, 2021, Article No. 276. https://doi.org/10.1186/s13662-021-03438-1 |