[1] |
Wah Tang, P., San Chua, P., Kee Chong, S., Saberi Mohamad, M., Wen Choon, Y., Deris, S.,etal. (2016) A Review of Gene Knockout Strategies for Microbial Cells.RecentPatentsonBiotechnology, 9, 176-197. https://doi.org/10.2174/1872208310666160517115047 |
[2] |
Menendez-Bravo, S., Comba, S., Gramajo, H. and Arabolaza, A. (2017) Metabolic Engineering of Microorganisms for the Production of Structurally Diverse Esters.AppliedMicrobiologyandBiotechnology, 101, 3043-3053. https://doi.org/10.1007/s00253-017-8179-7 |
[3] |
Tamano, K., Brown, D.W. and Yoshimi, A. (2023) Editorial: The Use of Metabolic Engineering Techniques to Increase the Productivity of Primary and Secondary Metabolites within Filamentous Fungi.FrontiersinFungalBiology, 4, Article 1178290. https://doi.org/10.3389/ffunb.2023.1178290 |
[4] |
Bills, G.F. and Gloer, J.B. (2016) Biologically Active Secondary Metabolites from the Fungi.MicrobiologySpectrum, 4, 32. https://doi.org/10.1128/microbiolspec.funk-0009-2016 |
[5] |
Nevalainen, H. and Peterson, R. (2014) Making Recombinant Proteins in Filamentous Fungi Are We Expecting Too Much?FrontiersinMicrobiology, 5, Article 75. |
[6] |
Nevalainen, K.M.H., Te’o, V.S.J. and Bergquist, P.L. (2005) Heterologous Protein Expression in Filamentous Fungi.TrendsinBiotechnology, 23, 468-474. https://doi.org/10.1016/j.tibtech.2005.06.002 |
[7] |
Śliżewska, W., Struszczyk-Świta, K. and Marchut-Mikołajczyk, O. (2022) Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective.InternationalJournalofMolecularSciences, 23, Article 4189. https://doi.org/10.3390/ijms23084189 |
[8] |
Deng, H., Bai, Y., Fan, T., Zheng, X. and Cai, Y. (2020) Advanced Strategy for Metabolite Exploration in Filamentous Fungi.CriticalReviewsinBiotechnology, 40, 180-198. https://doi.org/10.1080/07388551.2019.1709798 |
[9] |
Liu, J. and Liu, G. (2018) Analysis of Secondary Metabolites from Plant Endophytic Fungi. In: Ma, W.B. and Wolpert, T., Eds.,PlantPathogenicFungiandOomycetes, Humana Press, 25-38. https://doi.org/10.1007/978-1-4939-8724-5_3 |
[10] |
Alberti, F., Foster, G.D. and Bailey, A.M. (2016) Natural Products from Filamentous Fungi and Production by Heterologous Expression.AppliedMicrobiologyandBiotechnology, 101, 493-500. https://doi.org/10.1007/s00253-016-8034-2 |
[11] |
Fischer, M.S. and Glass, N.L. (2019) Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network.FrontiersinMicrobiology, 10, Article 619. https://doi.org/10.3389/fmicb.2019.00619 |
[12] |
Wohlschlager, L., Csarman, F., Zrilić, M., Seiboth, B. and Ludwig, R. (2021) Comparative Characterization of Glyoxal Oxidase from Phanerochaete Chrysosporium Expressed at High Levels in Pichia Pastoris andTrichodermareesei.EnzymeandMicrobialTechnology, 145, Article 109748. https://doi.org/10.1016/j.enzmictec.2021.109748 |
[13] |
Bailey, A.M., Alberti, F., Kilaru, S., Collins, C.M., de Mattos-Shipley, K., Hartley, A.J.,etal. (2016) Identification and Manipulation of the Pleuromutilin Gene Cluster fromClitopiluspasseckerianusfor Increased Rapid Antibiotic Production.ScientificReports, 6, Article No. 25202. https://doi.org/10.1038/srep25202 |
[14] |
张斯童, 石佳, 王刚, 等. 基因敲除技术在微生物代谢途径改造中的研究进展[J]. 吉林农业大学学报, 2024, 46(2): 175-186. |
[15] |
Li, X. and Heyer, W. (2008) Homologous Recombination in DNA Repair and DNA Damage Tolerance.CellResearch, 18, 99-113. https://doi.org/10.1038/cr.2008.1 |
[16] |
Ding, Q. and Ye, C. (2023) Microbial Cell Factories Based on Filamentous Bacteria, Yeasts, and Fungi.MicrobialCellFactories, 22, Article No. 20. https://doi.org/10.1186/s12934-023-02025-1 |
[17] |
Martzy, R. and Mach-Aigner, A.R. (2020) The Potential of Synthetic Biology forTrichodermareesei. In: Mach-Aigner, A.R. and Martzy, R., Eds.,Trichodermareesei, Humana, 45-54. https://doi.org/10.1007/978-1-0716-1048-0_3 |
[18] |
Xu, Y., Shan, L., Zhou, Y., Xie, Z., Ball, A.S., Cao, W.,etal. (2019) Development of a Cre-loxP-Based Genetic System inAspergillusnigerATCC1015 and Its Application to Construction of Efficient Organic Acid-Producing Cell Factories.AppliedMicrobiologyandBiotechnology, 103, 8105-8114. https://doi.org/10.1007/s00253-019-10054-3 |
[19] |
吕佳. 丽江来源丝状真菌次级代谢产物分离鉴定及myrothecisin E的生物合成途径研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023. |
[20] |
陈思羽, 李晓, 杜文珍, 等. 丝状真菌Podospora anserina中光敏色素基因的鉴定及功能分析[J]. 微生物学报, 2024, 64(2): 443-460. |
[21] |
Weld, R.J., Plummer, K.M., Carpenter, M.A. and Ridgway, H.J. (2006) Approaches to Functional Genomics in Filamentous Fungi.CellResearch, 16, 31-44. https://doi.org/10.1038/sj.cr.7310006 |
[22] |
Nakamura, H., Katayama, T., Okabe, T., Iwashita, K., Fujii, W., Kitamoto, K.,etal. (2017) Highly Efficient Gene Targeting in aspergillus Oryzae Industrial Strains underligDMutation Introduced by Genome Editing: Strain-Specific Differences in the Effects of Deleting EcdR, the Negative Regulator of Sclerotia Formation.TheJournalofGeneralandAppliedMicrobiology, 63, 172-178. https://doi.org/10.2323/jgam.2016.10.002 |
[23] |
Qin, X., Li, R., Luo, X., Lin, Y. and Feng, J. (2017) Deletion ofligDSignificantly Improves Gene Targeting Frequency in the Lignocellulolytic Filamentous FungusPenicilliumoxalicum.FungalBiology, 121, 615-623. https://doi.org/10.1016/j.funbio.2017.04.005 |
[24] |
Zhang, T., Zhao, S., Liao, L., Li, C., Liao, G. and Feng, J. (2017) Deletion ofTpKu70 Facilitates Gene Targeting inTalaromycespinophilusand Identification ofTpAmyRInvolvement in Amylase Production.WorldJournalofMicrobiologyandBiotechnology, 33, Article No. 171. https://doi.Org/10.1007/s11274-017-2331-5 |
[25] |
Wang, S., Chen, H., Tang, X., Zhang, H., Chen, W. and Chen, Y.Q. (2017) Molecular Tools for Gene Manipulation in Filamentous Fungi.AppliedMicrobiologyandBiotechnology, 101, 8063-8075. https://doi.org/10.1007/s00253-017-8486-z |
[26] |
Zhang, H., Zhang, Y. and Yin, H. (2019) Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9.MolecularTherapy, 27, 735-746. https://doi.org/10.1016/j.ymthe.2019.01.014 |
[27] |
Jiang, S. and Shen, Q.W. (2019) Principles of Gene Editing Techniques and Applications in Animal Husbandry. 3Biotech, 9, Article No. 28. https://doi.org/10.1007/s13205-018-1563-x |
[28] |
谢晓刚, 薛嘉, 康健, 等. 基因编辑技术发展及其在家畜上的应用[J]. 农业生物技术学报, 2019, 27(1): 139-149. |
[29] |
Hu, J.H., Davis, K.M. and Liu, D.R. (2016) Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.CellChemicalBiology, 23, 57-73. https://doi.org/10.1016/j.chembiol.2015.12.009 |
[30] |
Nødvig, C.S., Nielsen, J.B., Kogle, M.E. and Mortensen, U.H. (2015) A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi.PLOSONE, 10, e0133085. https://doi.org/10.1371/journal.pone.0133085 |
[31] |
Huang, L., Dong, H., Zheng, J., Wang, B. and Pan, L. (2019) Highly Efficient Single Base Editing in Aspergillus Niger with CRISPR/Cas9 Cytidine Deaminase Fusion.MicrobiologicalResearch, 223, 44-50. https://doi.org/10.1016/j.micres.2019.03.007 |
[32] |
Steiger, M.G., Rassinger, A., Mattanovich, D. and Sauer, M. (2019) Engineering of the Citrate Exporter Protein Enables High Citric Acid Production in Aspergillus Niger.MetabolicEngineering, 52, 224-231. https://doi.org/10.1016/j.ymben.2018.12.004 |
[33] |
Mózsik, L., Hoekzema, M., de Kok, N.A.W., Bovenberg, R.A.L., Nygård, Y. and Driessen, A.J.M. (2021) CRISPR-Based Transcriptional Activation Tool for Silent Genes in Filamentous Fungi.ScientificReports, 11, Article No. 1118. https://doi.org/10.1038/s41598-020-80864-3 |
[34] |
Li, Y., Zhang, H., Chen, Z., Fan, J., Chen, T., Zeng, B.,etal. (2022) Construction of Single, Double, or Triple Mutants within kojic Acid Synthesis GeneskojA,kojR, andkojTby the CRISPR/Cas9 Tool inAspergillusoryzae.FoliaMicrobiologica, 67, 459-468. https://doi.org/10.1007/s12223-022-00949-6 |
[35] |
Jiménez, A., Muñoz-Fernández, G., Ledesma-Amaro, R., Buey, R.M. and Revuelta, J.L. (2019) One-Vector CRISPR/Cas9 Genome Engineering of the Industrial FungusAshbyagossypii.MicrobialBiotechnology, 12, 1293-1301. https://doi.org/10.1111/1751-7915.13425 |
[36] |
Song, R., Zhai, Q., Sun, L., Huang, E., Zhang, Y., Zhu, Y.,etal. (2019) CRISPR/Cas9 Genome Editing Technology in Filamentous Fungi: Progress and Perspective.AppliedMicrobiologyandBiotechnology, 103, 6919-6932. https://doi.org/10.1007/s00253-019-10007-w |
[37] |
Wang, S., Xing, H., Hua, C., Guo, H. and Zhang, J. (2016) An Improved Single-Step Cloning Strategy Simplifies theAgrobacteriumtumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method forVerticilliumdahliae.Phytopathology, 106, 645-652. https://doi.org/10.1094/phyto-10-15-0280-r |
[38] |
Guo, Z., Wu, H., Peng, B., Kang, B., Liu, L., Luo, C.,etal. (2023) Identifying Pathogenicity-Related Genes in the Pathogen Colletotrichum Magnum Causing Watermelon Anthracnose Disease via T-DNA Insertion Mutagenesis.FrontiersinMicrobiology, 14, Article 1220116. https://doi.org/10.3389/fmicb.2023.1220116 |
[39] |
Zhang, J., Han, X., Su, Y., Staehelin, C. and Xu, C. (2023) T-DNA Insertion Mutagenesis inPenicilliumbrocaeResults in Identification of an Enolase Gene Mutant Impaired in Secretion of Organic Acids and Phosphate Solubilization.Microbiology, 169, Article 1325. https://doi.org/10.1099/mic.0.001325 |
[40] |
Whitten, M.M. (2019) Novel RNAi Delivery Systems in the Control of Medical and Veterinary Pests.CurrentOpinioninInsectScience, 34, 1-6. https://doi.org/10.1016/j.cois.2019.02.001 |
[41] |
尹秀山, 张令强, 贺福初. RNAi技术在转基因动物中的应用[J]. 遗传, 2006, 28(3): 251-256. |
[42] |
Li, L., Chang, S. and Liu, Y. (2010) RNA Interference Pathways in Filamentous Fungi.CellularandMolecularLifeSciences, 67, 3849-3863. https://doi.org/10.1007/s00018-010-0471-y |
[43] |
阮露晨. 无痕敲除构建米曲霉尿嘧啶营养缺陷型菌株[D]: [硕士学位论文]. 天津: 天津科技大学, 2020. |
[44] |
高育青, 张豪杰, 张丹凤, 等. 米曲霉RIB40高效同源重组和尿苷/尿嘧啶营养缺陷型菌株的构建[J]. 食品工业科技, 2023, 44(1): 200-207. |
[45] |
申玉玉, 陈忠秀, 陈杰, 等. 一种高效无选择标记的黑曲霉基因组编辑方法[J]. 生物工程学报, 2022, 38(12): 4744-4755. |
[46] |
Yamaguchi, S., Fujioka, T., Yoshimi, A., Kumagai, T., Umemura, M., Abe, K.,etal. (2023) Discovery of a Gene Cluster for the Biosynthesis of Novel Cyclic Peptide Compound, KK-1, inCurvulariaclavata.FrontiersinFungalBiology, 3, Article 1081179. https://doi.org/10.3389/ffunb.2022.1081179 |
[47] |
Huang, W., Du, Y., Yang, Y., He, J., Lei, Q., Yang, X.,etal. (2020) Two CRISPR/Cas9 Systems Developed inThermomycesdupontiiand Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.AppliedandEnvironmentalMicrobiology, 86, e01486-20. https://doi.org/10.1128/aem.01486-20 |