[1] |
Wah Tang, P., San Chua, P., Kee Chong, S., Saberi Mohamad, M., Wen Choon, Y., Deris, S., et al. (2016) A Review of Gene Knockout Strategies for Microbial Cells. Recent Patents on Biotechnology, 9, 176-197. https://doi.org/10.2174/1872208310666160517115047 |
[2] |
Menendez-Bravo, S., Comba, S., Gramajo, H. and Arabolaza, A. (2017) Metabolic Engineering of Microorganisms for the Production of Structurally Diverse Esters. Applied Microbiology and Biotechnology, 101, 3043-3053. https://doi.org/10.1007/s00253-017-8179-7 |
[3] |
Tamano, K., Brown, D.W. and Yoshimi, A. (2023) Editorial: The Use of Metabolic Engineering Techniques to Increase the Productivity of Primary and Secondary Metabolites within Filamentous Fungi. Frontiers in Fungal Biology, 4, Article 1178290. https://doi.org/10.3389/ffunb.2023.1178290 |
[4] |
Bills, G.F. and Gloer, J.B. (2016) Biologically Active Secondary Metabolites from the Fungi. Microbiology Spectrum, 4, 32. https://doi.org/10.1128/microbiolspec.funk-0009-2016 |
[5] |
Nevalainen, H. and Peterson, R. (2014) Making Recombinant Proteins in Filamentous Fungi Are We Expecting Too Much? Frontiers in Microbiology, 5, Article 75. |
[6] |
Nevalainen, K.M.H., Te’o, V.S.J. and Bergquist, P.L. (2005) Heterologous Protein Expression in Filamentous Fungi. Trends in Biotechnology, 23, 468-474. https://doi.org/10.1016/j.tibtech.2005.06.002 |
[7] |
Śliżewska, W., Struszczyk-Świta, K. and Marchut-Mikołajczyk, O. (2022) Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. International Journal of Molecular Sciences, 23, Article 4189. https://doi.org/10.3390/ijms23084189 |
[8] |
Deng, H., Bai, Y., Fan, T., Zheng, X. and Cai, Y. (2020) Advanced Strategy for Metabolite Exploration in Filamentous Fungi. Critical Reviews in Biotechnology, 40, 180-198. https://doi.org/10.1080/07388551.2019.1709798 |
[9] |
Liu, J. and Liu, G. (2018) Analysis of Secondary Metabolites from Plant Endophytic Fungi. In: Ma, W.B. and Wolpert, T., Eds., Plant Pathogenic Fungi and Oomycetes, Humana Press, 25-38. https://doi.org/10.1007/978-1-4939-8724-5_3 |
[10] |
Alberti, F., Foster, G.D. and Bailey, A.M. (2016) Natural Products from Filamentous Fungi and Production by Heterologous Expression. Applied Microbiology and Biotechnology, 101, 493-500. https://doi.org/10.1007/s00253-016-8034-2 |
[11] |
Fischer, M.S. and Glass, N.L. (2019) Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Frontiers in Microbiology, 10, Article 619. https://doi.org/10.3389/fmicb.2019.00619 |
[12] |
Wohlschlager, L., Csarman, F., Zrilić, M., Seiboth, B. and Ludwig, R. (2021) Comparative Characterization of Glyoxal Oxidase from Phanerochaete Chrysosporium Expressed at High Levels in Pichia Pastoris and Trichoderma reesei. Enzyme and Microbial Technology, 145, Article 109748. https://doi.org/10.1016/j.enzmictec.2021.109748 |
[13] |
Bailey, A.M., Alberti, F., Kilaru, S., Collins, C.M., de Mattos-Shipley, K., Hartley, A.J., et al. (2016) Identification and Manipulation of the Pleuromutilin Gene Cluster from Clitopilus passeckerianus for Increased Rapid Antibiotic Production. Scientific Reports, 6, Article No. 25202. https://doi.org/10.1038/srep25202 |
[14] |
张斯童, 石佳, 王刚, 等. 基因敲除技术在微生物代谢途径改造中的研究进展[J]. 吉林农业大学学报, 2024, 46(2): 175-186. |
[15] |
Li, X. and Heyer, W. (2008) Homologous Recombination in DNA Repair and DNA Damage Tolerance. Cell Research, 18, 99-113. https://doi.org/10.1038/cr.2008.1 |
[16] |
Ding, Q. and Ye, C. (2023) Microbial Cell Factories Based on Filamentous Bacteria, Yeasts, and Fungi. Microbial Cell Factories, 22, Article No. 20. https://doi.org/10.1186/s12934-023-02025-1 |
[17] |
Martzy, R. and Mach-Aigner, A.R. (2020) The Potential of Synthetic Biology for Trichoderma reesei. In: Mach-Aigner, A.R. and Martzy, R., Eds., Trichoderma reesei, Humana, 45-54. https://doi.org/10.1007/978-1-0716-1048-0_3 |
[18] |
Xu, Y., Shan, L., Zhou, Y., Xie, Z., Ball, A.S., Cao, W., et al. (2019) Development of a Cre-loxP-Based Genetic System in Aspergillus niger ATCC1015 and Its Application to Construction of Efficient Organic Acid-Producing Cell Factories. Applied Microbiology and Biotechnology, 103, 8105-8114. https://doi.org/10.1007/s00253-019-10054-3 |
[19] |
吕佳. 丽江来源丝状真菌次级代谢产物分离鉴定及myrothecisin E的生物合成途径研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023. |
[20] |
陈思羽, 李晓, 杜文珍, 等. 丝状真菌Podospora anserina中光敏色素基因的鉴定及功能分析[J]. 微生物学报, 2024, 64(2): 443-460. |
[21] |
Weld, R.J., Plummer, K.M., Carpenter, M.A. and Ridgway, H.J. (2006) Approaches to Functional Genomics in Filamentous Fungi. Cell Research, 16, 31-44. https://doi.org/10.1038/sj.cr.7310006 |
[22] |
Nakamura, H., Katayama, T., Okabe, T., Iwashita, K., Fujii, W., Kitamoto, K., et al. (2017) Highly Efficient Gene Targeting in aspergillus Oryzae Industrial Strains under ligD Mutation Introduced by Genome Editing: Strain-Specific Differences in the Effects of Deleting EcdR, the Negative Regulator of Sclerotia Formation. The Journal of General and Applied Microbiology, 63, 172-178. https://doi.org/10.2323/jgam.2016.10.002 |
[23] |
Qin, X., Li, R., Luo, X., Lin, Y. and Feng, J. (2017) Deletion of ligD Significantly Improves Gene Targeting Frequency in the Lignocellulolytic Filamentous Fungus Penicillium oxalicum. Fungal Biology, 121, 615-623. https://doi.org/10.1016/j.funbio.2017.04.005 |
[24] |
Zhang, T., Zhao, S., Liao, L., Li, C., Liao, G. and Feng, J. (2017) Deletion of TpKu70 Facilitates Gene Targeting in Talaromyces pinophilus and Identification of TpAmyR Involvement in Amylase Production. World Journal of Microbiology and Biotechnology, 33, Article No. 171. https://doi.Org/10.1007/s11274-017-2331-5 |
[25] |
Wang, S., Chen, H., Tang, X., Zhang, H., Chen, W. and Chen, Y.Q. (2017) Molecular Tools for Gene Manipulation in Filamentous Fungi. Applied Microbiology and Biotechnology, 101, 8063-8075. https://doi.org/10.1007/s00253-017-8486-z |
[26] |
Zhang, H., Zhang, Y. and Yin, H. (2019) Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 27, 735-746. https://doi.org/10.1016/j.ymthe.2019.01.014 |
[27] |
Jiang, S. and Shen, Q.W. (2019) Principles of Gene Editing Techniques and Applications in Animal Husbandry. 3 Biotech, 9, Article No. 28. https://doi.org/10.1007/s13205-018-1563-x |
[28] |
谢晓刚, 薛嘉, 康健, 等. 基因编辑技术发展及其在家畜上的应用[J]. 农业生物技术学报, 2019, 27(1): 139-149. |
[29] |
Hu, J.H., Davis, K.M. and Liu, D.R. (2016) Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chemical Biology, 23, 57-73. https://doi.org/10.1016/j.chembiol.2015.12.009 |
[30] |
Nødvig, C.S., Nielsen, J.B., Kogle, M.E. and Mortensen, U.H. (2015) A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLOS ONE, 10, e0133085. https://doi.org/10.1371/journal.pone.0133085 |
[31] |
Huang, L., Dong, H., Zheng, J., Wang, B. and Pan, L. (2019) Highly Efficient Single Base Editing in Aspergillus Niger with CRISPR/Cas9 Cytidine Deaminase Fusion. Microbiological Research, 223, 44-50. https://doi.org/10.1016/j.micres.2019.03.007 |
[32] |
Steiger, M.G., Rassinger, A., Mattanovich, D. and Sauer, M. (2019) Engineering of the Citrate Exporter Protein Enables High Citric Acid Production in Aspergillus Niger. Metabolic Engineering, 52, 224-231. https://doi.org/10.1016/j.ymben.2018.12.004 |
[33] |
Mózsik, L., Hoekzema, M., de Kok, N.A.W., Bovenberg, R.A.L., Nygård, Y. and Driessen, A.J.M. (2021) CRISPR-Based Transcriptional Activation Tool for Silent Genes in Filamentous Fungi. Scientific Reports, 11, Article No. 1118. https://doi.org/10.1038/s41598-020-80864-3 |
[34] |
Li, Y., Zhang, H., Chen, Z., Fan, J., Chen, T., Zeng, B., et al. (2022) Construction of Single, Double, or Triple Mutants within kojic Acid Synthesis Genes kojA, kojR, and kojT by the CRISPR/Cas9 Tool in Aspergillus oryzae. Folia Microbiologica, 67, 459-468. https://doi.org/10.1007/s12223-022-00949-6 |
[35] |
Jiménez, A., Muñoz-Fernández, G., Ledesma-Amaro, R., Buey, R.M. and Revuelta, J.L. (2019) One-Vector CRISPR/Cas9 Genome Engineering of the Industrial Fungus Ashbya gossypii. Microbial Biotechnology, 12, 1293-1301. https://doi.org/10.1111/1751-7915.13425 |
[36] |
Song, R., Zhai, Q., Sun, L., Huang, E., Zhang, Y., Zhu, Y., et al. (2019) CRISPR/Cas9 Genome Editing Technology in Filamentous Fungi: Progress and Perspective. Applied Microbiology and Biotechnology, 103, 6919-6932. https://doi.org/10.1007/s00253-019-10007-w |
[37] |
Wang, S., Xing, H., Hua, C., Guo, H. and Zhang, J. (2016) An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae. Phytopathology, 106, 645-652. https://doi.org/10.1094/phyto-10-15-0280-r |
[38] |
Guo, Z., Wu, H., Peng, B., Kang, B., Liu, L., Luo, C., et al. (2023) Identifying Pathogenicity-Related Genes in the Pathogen Colletotrichum Magnum Causing Watermelon Anthracnose Disease via T-DNA Insertion Mutagenesis. Frontiers in Microbiology, 14, Article 1220116. https://doi.org/10.3389/fmicb.2023.1220116 |
[39] |
Zhang, J., Han, X., Su, Y., Staehelin, C. and Xu, C. (2023) T-DNA Insertion Mutagenesis in Penicillium brocae Results in Identification of an Enolase Gene Mutant Impaired in Secretion of Organic Acids and Phosphate Solubilization. Microbiology, 169, Article 1325. https://doi.org/10.1099/mic.0.001325 |
[40] |
Whitten, M.M. (2019) Novel RNAi Delivery Systems in the Control of Medical and Veterinary Pests. Current Opinion in Insect Science, 34, 1-6. https://doi.org/10.1016/j.cois.2019.02.001 |
[41] |
尹秀山, 张令强, 贺福初. RNAi技术在转基因动物中的应用[J]. 遗传, 2006, 28(3): 251-256. |
[42] |
Li, L., Chang, S. and Liu, Y. (2010) RNA Interference Pathways in Filamentous Fungi. Cellular and Molecular Life Sciences, 67, 3849-3863. https://doi.org/10.1007/s00018-010-0471-y |
[43] |
阮露晨. 无痕敲除构建米曲霉尿嘧啶营养缺陷型菌株[D]: [硕士学位论文]. 天津: 天津科技大学, 2020. |
[44] |
高育青, 张豪杰, 张丹凤, 等. 米曲霉RIB40高效同源重组和尿苷/尿嘧啶营养缺陷型菌株的构建[J]. 食品工业科技, 2023, 44(1): 200-207. |
[45] |
申玉玉, 陈忠秀, 陈杰, 等. 一种高效无选择标记的黑曲霉基因组编辑方法[J]. 生物工程学报, 2022, 38(12): 4744-4755. |
[46] |
Yamaguchi, S., Fujioka, T., Yoshimi, A., Kumagai, T., Umemura, M., Abe, K., et al. (2023) Discovery of a Gene Cluster for the Biosynthesis of Novel Cyclic Peptide Compound, KK-1, in Curvularia clavata. Frontiers in Fungal Biology, 3, Article 1081179. https://doi.org/10.3389/ffunb.2022.1081179 |
[47] |
Huang, W., Du, Y., Yang, Y., He, J., Lei, Q., Yang, X., et al. (2020) Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation. Applied and Environmental Microbiology, 86, e01486-20. https://doi.org/10.1128/aem.01486-20 |