[1] |
韩进兰. 食源性疾病监测中病原微生物检验结果分析[J]. 临床检验杂志(电子版), 2020, 9(1): 122. |
[2] |
Etayash, H., Khan, M.F., Kaur, K. and Thundat, T. (2016) Microfluidic Cantilever Detects Bacteria and Measures Their Susceptibility to Antibiotics in Small Confined Volumes. Nature Communications, 7, Article No. 12947. https://doi.org/10.1038/ncomms12947 |
[3] |
Hou, S., Wang, S., Zhao, X., Li, W., Gao, J., Wang, Y., et al. (2022) Establishment of Indirect ELISA Method for Salmonella Antibody Detection from Ducks Based on PagN Protein. BMC Veterinary Research, 18, Article No. 424. https://doi.org/10.1186/s12917-022-03519-7 |
[4] |
张鹏, 商晨, 王严. 恒温核酸扩增芯片法在呼吸道感染性病原菌检测中的应用[J]. 中国生物制品学杂志, 2022, 35(5): 590-593. |
[5] |
崔玉娟. 基因测序技术在食品安全检测中的应用[J]. 食品安全导刊, 2021(23): 173-174. |
[6] |
Tachibana, H., Saito, M., Shibuya, S., Tsuji, K., Miyagawa, N., Yamanaka, K., et al. (2015) On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform. Biosensors and Bioelectronics, 74, 725-730. https://doi.org/10.1016/j.bios.2015.07.009 |
[7] |
Hidalgo-Cantabrana, C. and Barrangou, R. (2020) Characterization and Applications of Type I CRISPR-Cas Systems. Biochemical Society Transactions, 48, 15-23. https://doi.org/10.1042/bst20190119 |
[8] |
Chylinski, K., Makarova, K.S., Charpentier, E. and Koonin, E.V. (2014) Classification and Evolution of Type II CRISPR-Cas Systems. Nucleic Acids Research, 42, 6091-6105. https://doi.org/10.1093/nar/gku241 |
[9] |
王想想, 杨荟. CRISPR-Cas9系统的基因编辑工具的应用和改进[J]. 生命的化学, 2019, 39(3): 430-437. |
[10] |
Paul, B. and Montoya, G. (2020) CRISPR-Cas12a: Functional Overview and Applications. Biomedical Journal, 43, 8-17. https://doi.org/10.1016/j.bj.2019.10.005 |
[11] |
Zhao, L., Qiu, M., Li, X., Yang, J. and Li, J. (2022) CRISPR-Cas13a System: A Novel Tool for Molecular Diagnostics. Frontiers in Microbiology, 13, Article 1060947. https://doi.org/10.3389/fmicb.2022.1060947 |
[12] |
杨兰, 杨洋, 李伟勋, Obaroakpo, J., 逄晓阳, 吕加平. 干酪乳杆菌CRISPR基因座分析[J]. 中国农业科学, 2019, 52(3): 521-529. |
[13] |
韩栋, 万金萍. 生物传感器及其在食品安全检测方面的应用[J]. 食品安全导刊, 2021(26): 147-148. |
[14] |
Wang, H., Wu, Q., Zhou, M., Li, C., Yan, C., Huang, L., et al. (2022) Development of a CRISPR/Cas9-Integrated Lateral Flow Strip for Rapid and Accurate Detection of Salmonella. Food Control, 142, Article 109203. https://doi.org/10.1016/j.foodcont.2022.109203 |
[15] |
Wang, X., Xiong, E., Tian, T., Cheng, M., Lin, W., Wang, H., et al. (2020) Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano, 14, 2497-2508. https://doi.org/10.1021/acsnano.0c00022 |
[16] |
Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157: H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041. https://doi.org/10.1021/acs.analchem.9b04162 |
[17] |
Marsic, T., Ali, Z., Tehseen, M., Mahas, A., Hamdan, S. and Mahfouz, M. (2021) Vigilant: An Engineered Vird2-Cas9 Complex for Lateral Flow Assay-Based Detection of Sars-Cov2. Nano Letters, 21, 3596-3603. https://doi.org/10.1021/acs.nanolett.1c00612 |
[18] |
Huang, M., Zhou, X., Wang, H. and Xing, D. (2018) Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Analytical Chemistry, 90, 2193-2200. https://doi.org/10.1021/acs.analchem.7b04542 |
[19] |
Guk, K., Keem, J.O., Hwang, S.G., Kim, H., Kang, T., Lim, E., et al. (2017) A Facile, Rapid and Sensitive Detection of MRSA Using a CRISPR-Mediated DNA FISH Method, Antibody-Like dCas9/sgRNA Complex. Biosensors and Bioelectronics, 95, 67-71. https://doi.org/10.1016/j.bios.2017.04.016 |
[20] |
Wang, H., Wu, Q., Yan, C., Xu, J., Qin, X., Wang, J., et al. (2022) CRISPR/Cas9 Bridged Recombinase Polymerase Amplification with Lateral Flow Biosensor Removing Potential Primer-Dimer Interference for Robust Staphylococcus Aureus Assay. Sensors and Actuators B: Chemical, 369, Article 132293. https://doi.org/10.1016/j.snb.2022.132293 |
[21] |
Wang, L., Shen, X., Wang, T., Chen, P., Qi, N., Yin, B., et al. (2020) A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosensors and Bioelectronics, 165, Article 112364. https://doi.org/10.1016/j.bios.2020.112364 |
[22] |
Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosensors and Bioelectronics, 159, Article 112143. https://doi.org/10.1016/j.bios.2020.112143 |
[23] |
Wang, J.Y. and Doudna, J.A. (2023) CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science, 379, eadd8643. https://doi.org/10.1126/science.add8643 |
[24] |
Mao, Z., Chen, R., Wang, X., Zhou, Z., Peng, Y., Li, S., et al. (2022) CRISPR/Cas12a-Based Technology: A Powerful Tool for Biosensing in Food Safety. Trends in Food Science & Technology, 122, 211-222. https://doi.org/10.1016/j.tifs.2022.02.030 |
[25] |
Tian, Y., Liu, T., Liu, C., Xu, Q., Fang, S., Wu, Y., et al. (2021) An Ultrasensitive and Contamination-Free On-Site Nucleic Acid Detection Platform for Listeria Monocytogenes Based on the CRISPR-Cas12a System Combined with Recombinase Polymerase Amplification. LWT—Food Science and Technology, 152, Article 112166. https://doi.org/10.1016/j.lwt.2021.112166 |
[26] |
赵淑军, 赵球平, 叶恒平, 杨感深, 李骏, 霍细香. 副溶血性弧菌引起的食物中毒调查及病原学研究[J]. 公共卫生与预防医学, 2020, 31(2): 113-117. |
[27] |
董换哲, 苑宁, 张蕴哲, 杨倩, 卢鑫, 郭威, 张伟. 跨越式滚环等温扩增技术结合CRISPR/Cas12a定量检测海产品中的副溶血性弧菌[J]. 食品科学, 2022, 43(14): 289-295. |
[28] |
Wang, X., Zhong, M., Liu, Y., Ma, P., Dang, L., Meng, Q., et al. (2020) Rapid and Sensitive Detection of COVID-19 Using CRISPR/Cas12a-Based Detection with Naked Eye Readout, Crispr/as12a-ner. Science Bulletin, 65, 1436-1439. |
[29] |
Xing, G.W., Shang, Y.T., Wang, X.R., et al. (2023) Multiplexed Detection of Foodborne Pathogens Using One-Pot CRISPR/Cas12a Combined with Recombinase Aided Amplification on a Finger-Actuated Microfluidic Biosensor. Biosensors and Bioelectronics, 220, Article 114885. |
[30] |
李林显. CRISPR-Cas12b的反式切割活性研究及其介导的核酸检测技术开发[D]: [硕士学位论文]. 开封: 河南大学, 2019. |
[31] |
Huang, Y., Gu, D., Xue, H., Yu, J., Tang, Y., Huang, J., et al. (2021) Rapid and Accurate Campylobacter Jejuni Detection with CRISPR-Cas12b Based on Newly Identified Campylobacter Jejuni-Specific and Conserved Genomic Signatures. Frontiers in Microbiology, 12, Article 649010. https://doi.org/10.3389/fmicb.2021.649010 |
[32] |
黄钰. 基于CRISPR-Cas12b的空肠弯曲菌检测系统的建立及初步应用[D]: [硕士学位论文]. 扬州: 扬州大学, 2021. |
[33] |
Sam, I.K., Chen, Y., Ma, J., Li, S., Ying, R., Li, L., et al. (2021) TB-QUICK: CRISPR-Cas12b-Assisted Rapid and Sensitive Detection of Mycobacterium Tuberculosis. Journal of Infection, 83, 54-60. https://doi.org/10.1016/j.jinf.2021.04.032 |
[34] |
Qian, W.D., Huang, J., et al. (2021) CRISPR-Cas12a Combined with Reverse Transcription Recombinase Polymerase Amplification for Sensitive and Specific Detection of Human Norovirus Genotype GII.4. Virology, 564, 26-32. |
[35] |
Qian, W., Huang, J., Wang, T., Fan, C., Kang, J., Zhang, Q., et al. (2022) Ultrasensitive and Visual Detection of Human Norovirus Genotype GII.4 or GII.17 Using Crispr-Cas12a Assay. Virology Journal, 19, Article No. 150. https://doi.org/10.1186/s12985-022-01878-z |
[36] |
Qian, J., Huang, D., Ni, D., Zhao, J., Shi, Z., Fang, M., et al. (2022) A Portable CRISPR Cas12a Based Lateral Flow Platform for Sensitive Detection of Staphylococcus Aureus with Double Insurance. Food Control, 132, Article 108485. https://doi.org/10.1016/j.foodcont.2021.108485 |
[37] |
Lin, L., Zha, G., Wei, H., Zheng, Y., Yang, P., Liu, Y., et al. (2023) Rapid Detection of Staphylococcus Aureus in Food Safety Using an Rpa-CRISPR-Cas12a Assay. Food Control, 145, Article 109505. https://doi.org/10.1016/j.foodcont.2022.109505 |
[38] |
Huang, L.Q., Yuan, N., et al. (2023) An Electrochemical Biosensor for the Highly Sensitive Detection of Staphylococcus Aureus Based on SRCA-CRISPR/Cas12a. Talanta, 252, Article 123821. |
[39] |
Shi, Y.Q., Kang, L., et al. (2022) CRISPR/Cas12a-Enhanced Loop-Mediated Isothermal Amplification for the Visual Detection of Shigella Flexneri. Frontiers in Bioengineering and Biotechnology, 10, Article 845688. |
[40] |
Lv, X., Cao, W., Zhang, H., Zhang, Y., Shi, L. and Ye, L. (2022) CE-RAA-CRISPR Assay: A Rapid and Sensitive Method for Detecting Vibrio Parahaemolyticus in Seafood. Foods, 11, Article 1681. https://doi.org/10.3390/foods11121681 |
[41] |
Wu, H., Chen, Y.J., et al. (2021) A Reversible Valve-Assisted Chip Coupling with Integrated Sample Treatment and CRISPR/Cas12a for Visual Detection of Vibrio Parahaemolyticus. Biosensors and Bioelectronics, 188, Article 113352. |
[42] |
Zhang, M., Liu, C., Shi, Y., Wu, J., Wu, J. and Chen, H. (2020) Selective Endpoint Visualized Detection of Vibrio Parahaemolyticus with CRISPR/Cas12a Assisted PCR Using Thermal Cycler for On-Site Application. Talanta, 214, Article 120818. https://doi.org/10.1016/j.talanta.2020.120818 |
[43] |
Yang, T., Chen, Y., He, J., Wu, J., Wang, M. and Zhong, X. (2023) A Designed Vessel Using Dissolvable Polyvinyl Alcohol Membrane as Automatic Valve to Couple LAMP with CRISPR/Cas12a System for Visual Detection. Biosensors, 13, Article 111. https://doi.org/10.3390/bios13010111 |
[44] |
Wang, L., He, F., Chen, X., He, K., Bai, L., Wang, Q., et al. (2022) A CRISPR/Cas12a-Based Label-Free Fluorescent Method for Visual Signal Output. Sensors and Actuators B: Chemical, 370, Article 132368. https://doi.org/10.1016/j.snb.2022.132368 |
[45] |
Chen, X., Wang, L., He, F., Chen, G., Bai, L., He, K., et al. (2021) Label-Free Colorimetric Method for Detection of vibrio Parahaemolyticus by Trimming the G-Quadruplex Dnazyme with CRISPR/Cas12a. Analytical Chemistry, 93, 14300-14306. https://doi.org/10.1021/acs.analchem.1c03468 |
[46] |
Ma, L., Peng, L., Yin, L., Liu, G. and Man, S. (2021) CRISPR-Cas12a-Powered Dual-Mode Biosensor for Ultrasensitive and Cross-Validating Detection of Pathogenic Bacteria. ACS Sensors, 6, 2920-2927. https://doi.org/10.1021/acssensors.1c00686 |
[47] |
Lee, S. and Oh, S. (2023) Lateral Flow Biosensor Based on Lamp-CRISPR/Cas12a for Sensitive and Visualized Detection of Salmonella Spp. Food Control, 145, Article 109494. https://doi.org/10.1016/j.foodcont.2022.109494 |
[48] |
Liu, L., Zhao, G., Li, X., Xu, Z., Lei, H. and Shen, X. (2022) Development of Rapid and Easy Detection of Salmonella in Food Matrics Using RPA-CRISPR/Cas12a Method. LWT—Food Science and Technology, 162, Article 113443. https://doi.org/10.1016/j.lwt.2022.113443 |
[49] |
Cai, Q., Shi, H., Sun, M., Ma, N., Wang, R., Yang, W., et al. (2022) Sensitive Detection of salmonella Based on CRISPR-Cas12a and the Tetrahedral DNA Nanostructure-Mediated Hyperbranched Hybridization Chain Reaction. Journal of Agricultural and Food Chemistry, 70, 16382-16389. https://doi.org/10.1021/acs.jafc.2c05831 |
[50] |
Yin, L., Duan, N., Chen, S., Yao, Y., Liu, J. and Ma, L. (2021) Ultrasensitive Pathogenic Bacteria Detection by a Smartphone-Read G-Quadruplex-Based CRISPR-Cas12a Bioassay. Sensors and Actuators B: Chemical, 347, Article 130586. https://doi.org/10.1016/j.snb.2021.130586 |
[51] |
Luo, Y., Shan, S., Wang, S., Li, J., Liu, D. and Lai, W. (2022) Accurate Detection of Salmonella Based on Microfluidic Chip to Avoid Aerosol Contamination. Foods, 11, Article 3887. https://doi.org/10.3390/foods11233887 |
[52] |
Zheng, S., Yang, Q., Yang, H., Zhang, Y., Guo, W. and Zhang, W. (2023) An Ultrasensitive and Specific Ratiometric Electrochemical Biosensor Based on SRCA-CRISPR/Cas12a System for Detection of Salmonella in Food. Food Control, 146, Article 109528. https://doi.org/10.1016/j.foodcont.2022.109528 |
[53] |
Zhang, H.G., Yang, S., et al. (2022) A Cascade Amplification Strategy for Ultrasensitive Salmonella Typhimurium Detection Based on DNA walker coupling with CRISPR-Cas12a. Journal of Colloid and Interface Science, 625, 257-263. |
[54] |
Jiang, W., He, C., Bai, L., Chen, Y., Jia, J., Pan, A., et al. (2023) A Rapid and Visual Method for Nucleic Acid Detection of Escherichia coli O157: H7 Based on Crispr/Cas12a-PMNT. Foods, 12, Article 236. https://doi.org/10.3390/foods12020236 |
[55] |
Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., et al. (2016) C2c2 Is a Single-Component Programmable RNA-Guided RNA-Targeting CRISPR Effector. Science, 353, aaf5573. https://doi.org/10.1126/science.aaf5573 |
[56] |
Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442. https://doi.org/10.1126/science.aam9321 |
[57] |
Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., et al. (2018) Field-DeployAble Viral Diagnostics Using CRISPR-Cas13. Science, 360, 444-448. https://doi.org/10.1126/science.aas8836 |
[58] |
Khan, H., Khan, A., Liu, Y., Wang, S., Bibi, S., Xu, H., et al. (2019) CRISPR-Cas13a Mediated Nanosystem for Attomolar Detection of Canine Parvovirus Type 2. Chinese Chemical Letters, 30, 2201-2204. https://doi.org/10.1016/j.cclet.2019.10.032 |
[59] |
苏璇, 葛以跃, 张倩, 朱小娟, 陈银, 吴涛, 乔乔, 赵康辰, 吴斌, 王祥喜, 庞正, 朱凤才, 崔仑标. CRISPR-Cas13a辅助RAA快速检测金黄色葡萄球菌的研究[J]. 中国病原生物学杂志, 2020, 15(3): 253-258. |
[60] |
Zhou, J., Yin, L., Dong, Y., Peng, L., Liu, G., Man, S., et al. (2020) CRISPR-Cas13a Based Bacterial Detection Platform: Sensing Pathogen Staphylococcus Aureus in Food Samples. Analytica Chimica Acta, 1127, 225-233. https://doi.org/10.1016/j.aca.2020.06.041 |
[61] |
安柏霖, 苏璇, 郭悦, 王祥喜, 葛以跃, 朱凤才, 崔仑标. RAA联合CRISPR-Cas13a快速检测4种腹泻病原菌[J]. 中国食品卫生杂志, 2023, 35(3): 381-389. |
[62] |
叶维伟. Cas13b介导的CRISPR RNA成熟及识别的结构生物学研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2019. |
[63] |
Mahas, A., Wang, Q., Marsic, T. and Mahfouz, M.M. (2021) A Novel Miniature CRISPR-Cas13 System for Sars-Cov-2 Diagnostics. ACS Synthetic Biology, 10, 2541-2551. https://doi.org/10.1021/acssynbio.1c00181 |
[64] |
Duan, L., Yang, X., Zhan, W., Tang, Y., Wei, M., Chen, K., et al. (2022) Development of a Rapid and Accurate CRISPR/Cas13-Based Diagnostic Test for GII.4 Norovirus Infection. Frontiers in Microbiology, 13, Article 912315. https://doi.org/10.3389/fmicb.2022.912315 |
[65] |
Gao, S., Liu, J., Li, Z., Ma, Y. and Wang, J. (2021) Sensitive Detection of Foodborne Pathogens Based on CRISPR-Cas13a. Journal of Food Science, 86, 2615-2625. https://doi.org/10.1111/1750-3841.15745 |
[66] |
An, B.L., Zhang, H.B., et al. (2021) Rapid and Sensitive Detection of Salmonella spp. Using CRISPR-Cas13a Combined with Recombinase Polymerase Amplification. Frontiers in Microbiology, 12, Article 732426. |
[67] |
Shen, J., Zhou, X., Shan, Y., Yue, H., Huang, R., Hu, J., et al. (2020) Sensitive Detection of a Bacterial Pathogen Using Allosteric Probe-Initiated Catalysis and CRISPR-Cas13a Amplification Reaction. Nature Communications, 11, Article No. 267. https://doi.org/10.1038/s41467-019-14135-9 |
[68] |
Liu, R., Ali, S., Huang, D., Zhang, Y., Lü, P. and Chen, Q. (2022) A Sensitive Nucleic Acid Detection Platform for Foodborne Pathogens Based on CRISPR-Cas13a System Combined with Polymerase Chain Reaction. Food Analytical Methods, 16, 356-366. https://doi.org/10.1007/s12161-022-02419-8 |
[69] |
Zhang, T., Zhou, W., Lin, X., Khan, M.R., Deng, S., Zhou, M., et al. (2021) Light-Up RNA Aptamer Signaling-CRISPR-Cas13a-Based Mix-and-Read Assays for Profiling Viable Pathogenic Bacteria. Biosensors and Bioelectronics, 176, Article 112906. https://doi.org/10.1016/j.bios.2020.112906 |
[70] |
Wei, J., Lu, N., Li, Z., Wu, X., Jiang, T., Xu, L., et al. (2019) The Mycobacterium Tuberculosis CRISPR-Associated Cas1 Involves Persistence and Tolerance to Anti-Tubercular Drugs. BioMed Research International, 2019, 1-9. https://doi.org/10.1155/2019/7861695 |
[71] |
张庆勋, 钟震宇, 郭青云, 何宏轩, 白加德. 基于CRISPR-Cas系统的病原体检测研究进展[J]. 中国畜牧兽医, 2022, 49(8): 3190-3199. |