淡水壳菜的危害及其近十年来防治技术研究及应用现状分析
The Harmfulness of Limnoperna fortunei and Its Prevention and Control Technology Research and Application Status Analysis in Recent Ten Years
DOI: 10.12677/ije.2024.133054, PDF, HTML, XML, 下载: 1  浏览: 41 
作者: 刘 坚:武汉工程大学化学与环境工程学院,湖北 武汉
关键词: 淡水壳菜生物污损防治技术应用现状Limnoperna fortunei Biological Fouling Prevention and Control Technology Application Status
摘要: 沼蛤(Limnoperna fortunei),又称淡水壳菜,是一种大型底栖动物,在中国主要分布在南方地区。其在管道内大量生长会造成管道生物污损和堵塞、污染水质;在水电站等水利工程中会腐蚀结构面、影响设备器械正常运行。本综述归纳总结了近十年国内外的文献,本综述归纳总结了近十年国内外的文献,介绍了淡水壳菜污损对水利工程的危害,分析了淡水壳菜的防治措施研究现状,并评估了各类防治技术的优缺点及其应用现状和前景,为淡水壳菜等污损生物的防治技术研究提供科学的思路和方向。
Abstract: Limnoperna fortunei is a kind of macrobenthos, which is mainly distributed in the southern China. Its extensive growth in the pipeline can cause biological fouling, blockage, and pollution of water quality; In water conservancy projects such as hydropower stations, structural surfaces can corrode and affect the normal operation of equipment and instruments. This review summarizes domestic and international literature in the past decade. This review summarizes the literature at home and abroad in recent ten years, and introduces the harm of Limnoperna fortunei fouling to water conservancy projects. The research status of prevention and control measures of Limnoperna fortunei was analyzed, and the advantages and disadvantages of various prevention and control technologies as well as their application status and prospects were evaluated, so as to provide scientific ideas and directions for the research of prevention and control technologies of Limnoperna fortunei and other fouling organisms.
文章引用:刘坚. 淡水壳菜的危害及其近十年来防治技术研究及应用现状分析[J]. 世界生态学, 2024, 13(3): 423-430. https://doi.org/10.12677/ije.2024.133054

1. 引言

沼蛤(Limnoperna fortunei),又称淡水壳菜、湖沼股蛤,国外又称为金贻贝(golden mussel),隶属于双壳纲、异柱目、贻贝科,属群栖性软体动物,多栖息在温带和亚热带流速较缓的湖泊或河流中,但在微咸水的河流中也能生长。淡水壳菜幼虫营浮游生活,成体营固着生活,常形成非常稠密层层堆叠的群体,具有生命周期短、成长快、繁殖强的特点。淡水壳菜是一种分布广泛的入侵生物,主要集中在拉美地区、南亚、东亚[1]和东南亚地区,在我国主要分布于南方地区[2]

近十年来,国内外有关淡水壳菜生理特征及防治的研究也呈现高速增长的趋势,本文综述了近十年来CNKI及Web of Science中有关“淡水壳菜”、“沼蛤”及其防治的论文,每年发表数量如下图1图2所示:

Figure 1. Nearly a decade SCI database publications (search term: “Limnoperna fortunei”, golden mussel)

1. 近十年sci数据库论文数量(搜索词:“Limnoperna fortunei”“golden mussel”)

Figure 2. Nearly a decade CNKI database publications (search term: “淡水壳菜”, “沼蛤”)

2. 近十年CNKI数据库论文数量(搜索词:“淡水壳菜”、“沼蛤”)

淡水壳菜在国内随着调水工程逐渐呈现向高纬度地区迅速扩张的趋势[3],特别是在水力电站等局部具有较高温度的结构中,极易出现淡水壳菜的附着[4]。在国外也显现出极快的扩张速度[5]随着其危害越来越大[6],对于其控制技术的研究也愈发被重视,近十年的相关论文数量也呈现迅速增长的趋势。

2. 淡水壳菜的主要危害

淡水壳菜(Limnoperna fortunei)是南方地区最常见的污损生物之一,其在适宜的水温下可以迅速繁殖,对水利工程造成各种危害。主要危害有污染水质、腐蚀水利构筑物、影响输水效率、造成设备堵塞、停机和携带危害人体健康的病毒威胁等,如下表1所示:

Table 1. Limnoperna fortunei hazards in water conservancy project

1. 淡水壳菜在水利工程中的危害

危害

主要表现

参考文献

污染水质

淡水壳菜的入侵会使环境中叶绿素和藻类含量明显增高,导致水体环境更适宜其生长最终使水体的浊度、氯化物、总碱度、总硬度、叶绿素a和藻类都高于正常水体[7]

[7]

腐蚀水体中的混凝土结构

混凝土结构是淡水壳菜较为喜爱的附着环境[8],所以极易出现淡水壳菜大量附着的情况。在输水工程中易造成管壁粗糙度增加,增加输水能耗,降低管道使用寿命[9]-[11]等。

[8]-[11]

影响输水调水管道效率

淡水壳菜在输水管道壁面附着,造成过流面积减少,输水效率降低[12]

[12]

污染调水工程水质,
造成生物污损。

淡水壳菜在调水工程中大量滋生易造成输水能力下降、影响器械和工程的正常运行、污染水体环境,且对于调水目的地也有极强的生物入侵风险[13]

[13]

堵塞养殖网箱

刘玮等人的研究表明淡水壳菜最喜附着于棉麻网绳和金属网箱中[14],养殖业常用的养殖网箱是淡水壳菜最理想的附着点,所以极易出现淡水壳菜大量附着,堵塞网箱的现象[15]

[14] [15]

携带病毒

R. N. dos Santos等在巴西的淡水壳菜壳菜中分离出了一种新的马赛病毒,这表明淡水壳菜也具有一定的携带病毒的风险[16]

[16]

影响水体菌落

J. Zhang等的研究表明淡水壳菜的存在会使得水体中的菌落群体发生改变,促进致病菌和有毒臭气产生[17]

[17]

淡水壳菜的危害不仅体现在对水利工程物理层面的破坏,在化学、生态层面的威胁也是不容忽视的。释放有毒物质、携带病毒、影响水质、影响水体菌落菌群等这些危害也需要引起足够的重视。

3. 治理技术及效果评估

淡水壳菜的防治方法大致可以分为三类:物理法、化学法、生物法[18],这三种方法。近十年来,物理法和生物法越来越成为主流,而化学法由于二次污染、药剂毒性难以消除等问题开始被其他方法慢慢取代。具体的措施如下表2所示:

Table 2. Processing methods and the advantages and disadvantages

2. 处理方法及优缺点

分类

方法

具体措施

优点

缺点

参考文献

物理法

物理涂层
[19]-[23]

环氧树脂底漆 + 硅胶面漆组合、铜基材料具有极强的防附着效果且可以较好的耐有机酸腐蚀

防附着效果较强、对环境和水质影响小、成本较低

涂层易被腐蚀、使用时间较短、不适用于长距离管道

[19]-[23]

湍流灭杀
[24]-[26]

向水中泵气或制造脉冲与壳菜幼体形成共振使幼体破裂死亡、加入孔板增加管道湍流度

灭杀效果较好、环境友好型、无二次污染

局限性大,只适用于空间有限时间无特别限制的环境

[24]-[26]

高温灭杀
[27]-[29]

逐渐升高水体温度或者突然将淡水壳菜暴露于高温环境(38℃~43℃) 0.7~17.5小时后全部死亡

在热带地区效益较好,回流热冲洗不会造成污染外泄

仅局限于热带地区,小规模、可暂停水利工程

[27]-[29]

超声灭杀[30]

超声波对于未形成壳的幼虫具有较强的灭杀作用

灭杀效果好、对水体污染小

尚未实际运用于水利工程中

[30]

空化射流技术水
下机器人[31]

利用水下机器人搭载水下清理系统

高效、不损害构筑物、可收集处理过的淡水壳菜

所需空间较大、成本较高

[31]

化学法

作用于足丝的氧
化剂[32]

低浓度次氯酸钠可以削弱足丝粘附力

防止了死亡个体造成水体污染、处理效果好、成本低

次氯酸钠存在一定的污染水体的风险

[32]

溶解型和微胶囊
化型杀菌剂[33]

用溶解型和微胶囊化型杀菌剂代替有害氯

微胶囊化可以较低浓度达到灭杀效果

微胶囊化增强了毒性且尚未有大规模应用

[33]

草苷膦[34]

草甘膦在实验中具有一定灭杀效果

适用于受农用化学品影响的水体

使用范围太小、尚未实际运用

[34]

从褐藻洗涤中提
取萜类物质[35]

从褐藻中提取的物质可以有效抵抗淡水壳菜的污损

绿色安全、无污染

工艺复杂、尚未实际运用

[35]

生物法

水电站中入侵生
物相互作用[36]

Cordy lophora sp.和Hydra sp等入侵生物也会抑制淡水壳菜的生长

可联合控制,有效降低多种入侵生物的数量

未实际运用

[36]

投加鱼类
[37]-[40]

通过投加捕食淡水壳菜的鱼类来防治

无二次污染、效果较好

周期长、可能造成其他水生生物的种群破坏

[37]-[40]

物理法处理效率较高,但对于空间和时间要求较大,适用于大型输水管道、蓄能电站等。化学法是比较主流的方案,因为其不受空间时间的限制、灭杀效果好、副作用影响相对不大等特点广泛运用于输水管道、自来水厂以及电站机组冷却水管中。生物法主要在水库等地能够起到较为有效的作用。

以上各方案各具缺陷,实际操作中特别是调水工程[41]中也常采取多方法联用的方法。例如在调水工程中,将调水工程划分为水源、取水口、输水通道和出水口四级区段,根据四个阶段各自的特点可以联合使用多种不同的方案。例如可以在输水水源段采用生物防治的方法进行初步抑制,在取水口采用湍流灭杀幼虫,在输水管道中使用物理涂料或者使用化学氧化剂灭杀并在出水口进行物理拦截的方案[42]

除已有的方法外,也有许多学者采用数据建模的方式预测某一特定时间地点的壳菜分布生长规律[43],用以提前防治壳菜的危害,在阿根廷[44]、巴西[45]、乌拉圭[46]等地均有运用实例。

4. 思考与展望

本文总结了近十年较为全面的治理方案,目前物理法中的物理涂层法以及化学法中的次氯酸钠有较为成熟的应用体系,湍流灭杀具有较强的发展潜力,虽只处于实验室阶段,但可以预见是一种灭除壳菜幼虫的有效方法。

部分方案在特定的地点也是具有较好的效果,例如高温灭杀,在水利电站,蓄能水库的某些结构中,可以在特定的检修期时,以设备的高温冷却水对壳菜易附着的区域进行定点灭杀。既节约能源,又可以有效去除,但这种方案要求设备有一个较长的检修期,对于没有备用机组,或者无法较长时间暂停的水利工程是不现实的。

前文中提出水下机器人射流清理技术,可以在输水管道、原水管道中樵采较为密集的区域进行灭杀,也能起到很好的效果。若水下机器人可以克服自身体积大,无法自动定位壳菜附着点等问题,那么此方法也是一种非常具有经济效益的治理方案。

生物法虽有一定效果,但投入成本高,收益相对较低,且投加生物可能造成额外的生物入侵,所以生物法相对而言最适合的还是与其他方案一起联用,作为一种辅助方案来协同其他方案使用。

其他的方案诸如超声波、微胶囊化杀菌剂、草苷酸、萜类物质、入侵生物相互作用的可行性依然存在有待商榷的地方,以及只在理论阶段的杀螺剂氯硝柳胺[47]、紫外光灭杀幼虫[48]可能需要较长时间的研究与发展来不断完善。

展望

消除淡水壳菜的危害有两种思路,其一是在幼年期将其灭杀或者防止其附着来减少,例如湍流灭杀、物理涂层等。其二是在成贝期对其进行灭杀,这又分为两条路线:第一种是设法破坏其足丝,让其无法成团生长,单个贝的去除要容易得多,即使是最基本的水力冲刷也能起到非常有效的效果。第二种是对成贝直接灭杀,大多采用化学氧化剂,物理破坏其结构的方法。

近十年的大部分方案与之前的方案都差不多采用第二种在成贝期处理壳菜达到灭杀的效果的方案,具有一定收效。但也有一小部分开始关注对于其幼虫的控制,本文认为,可以多尝试控制其幼虫扩散传播,相较于成贝期再控制,既可以在造成危害之前就将其灭杀在摇篮中,又可以以更环境友好的方案,如物理破坏其细胞结构,或者少剂量的温和的药剂灭杀。稚贝的残骸不会像成贝的残骸污染水质,造成二次污染。

基金项目

武汉工程大学创新基金(CX2023117)。

参考文献

[1] Nakano, D., Baba, T., Endo, N., Nagayama, S., Fujinaga, A., Uchida, A., et al. (2014) Invasion, Dispersion, Population Persistence and Ecological Impacts of a Freshwater Mussel (Limnoperna fortunei) in the Honshu Island of Japan. Biological Invasions, 17, 743-759.
https://doi.org/10.1007/s10530-014-0765-3
[2] Xu, M. (2015) Distribution and Spread of Limnoperna fortunei in China. In: Boltovskoy, D., Ed., Limnoperna fortunei, Springer, 313-320.
https://doi.org/10.1007/978-3-319-13494-9_17
[3] Wang, H., Xia, Z., Li, S., MacIsaac, H.J. and Zhan, A. (2022) What’s Coming Eventually Comes: A Follow-Up on an Invader’s Spread by the World’s Largest Water Diversion in China. Biological Invasions, 25, 1-5.
https://doi.org/10.1007/s10530-022-02897-1
[4] Linares, M.S., Macedo, D.R., Massara, R.L. and Callisto, M. (2020) Why Are They Here? Local Variables Explain the Distribution of Invasive Mollusk Species in Neotropical Hydropower Reservoirs. Ecological Indicators, 117, Article ID: 106674.
https://doi.org/10.1016/j.ecolind.2020.106674
[5] Ludwig, S., Sari, E.H.R., Paixão, H., Montresor, L.C., Araújo, J., Brito, C.F.A., et al. (2020) High Connectivity and Migration Potentiate the Invasion of Limnoperna fortunei (Mollusca: Mytilidae) in South America. Hydrobiologia, 848, 499-513.
https://doi.org/10.1007/s10750-020-04458-w
[6] Sousa, R., Novais, A., Costa, R. and Strayer, D.L. (2013) Invasive Bivalves in Fresh Waters: Impacts from Individuals to Ecosystems and Possible Control Strategies. Hydrobiologia, 735, 233-251.
https://doi.org/10.1007/s10750-012-1409-1
[7] 李荣, 王洪帅, 白金超, 等. 天津北塘水库淡水壳菜生境分析[J]. 供水技术, 2020, 14(1): 19-22.
[8] 潘志权, 蔡杰龙. 淡水壳菜模拟代谢酸对水泥基材料侵蚀机理研究[J]. 人民珠江, 2019, 40(10): 60-65.
[9] 郑航桅, 潘志权. 淡水壳菜防治涂料对输水管涵糙率的影响及效益评价[J]. 中国给水排水, 2021, 37(24): 87-92.
[10] 李榕. 输水工程中以淡水壳菜为主的污损体系对混凝土的侵蚀及其防护研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2017.
[11] Yao, G., Xu, M. and An, X. (2017) Concrete Deterioration Caused by Freshwater Mussel Limnoperna fortunei Fouling. International Biodeterioration & Biodegradation, 121, 55-65.
https://doi.org/10.1016/j.ibiod.2017.03.011
[12] 欧祖贤. 淡水壳菜对渠道输水能力的影响研究[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2020.
[13] Zhan, A., Zhang, L., Xia, Z., Ni, P., Xiong, W., Chen, Y., et al. (2015) Water Diversions Facilitate Spread of Non-Native Species. Biological Invasions, 17, 3073-3080.
https://doi.org/10.1007/s10530-015-0940-1
[14] 刘玮, 徐梦珍, 王兆印, 等. 沼蛤(Limnoperna fortunei)幼虫的附着行为特性[J]. 生态学报, 2017, 37(8): 2779-2787.
[15] Vianna, G.R., Oliveira, T.M., Teixeira, E.A., Nicolino, R.R., Boscolo, W.R., Silva, M.X., et al. (2019) Biosecurity for fishfarming cage systems due to the highly clogged screen aggravated by Lim-Noperna fortunei. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71, 314-322.
https://doi.org/10.1590/1678-4162-10339
[16] dos Santos, R.N., Campos, F.S., Medeiros de Albuquerque, N.R., Finoketti, F., Côrrea, R.A., Cano-Ortiz, L., et al. (2016) A New Marseillevirus Isolated in Southern Brazil from Limnoperna fortunei. Scientific Reports, 6, Article No. 35237.
https://doi.org/10.1038/srep35237
[17] Zhang, J., Xu, M., Sun, L., Reible, D. and Fu, X. (2022) Impact of Golden Mussel (Limnoperna fortunei) Colonization on Bacterial Communities and Potential Risk to Water Quality. Ecological Indicators, 144, Article ID: 109499.
https://doi.org/10.1016/j.ecolind.2022.109499
[18] Zhang, R., Zhang, Y., Fei, X., Hou, Y., Shi, J., Li, E., et al. (2022) Limnoperna fortuneias an Invasive Biofouling Bivalve Species in Freshwater: A Review of Its Occurrence, Biological Traits, Risks, and Control Strategies. Journal of Water Supply: Research and Technology-Aqua, 71, 1364-1383.
https://doi.org/10.2166/aqua.2022.238
[19] 杨永民, 潘志权, 陈小丹, 等. 防护淡水壳菜涂料性能分析及工程实践[J]. 新型建筑材料, 2021, 48(11): 77-81.
[20] 华丕龙, 何涛, 何直, 等. 防护材料防止淡水壳菜附着的试验研究[J]. 水电站机电技术, 2015(z1): 4-7, 18.
[21] 姚国友, 徐梦珍, 安雪晖, 等. 防淡水壳菜附着涂料的快速评价指标体系[J]. 清华大学学报(自然科学版), 2015, 55(9): 957-963.
[22] Xu, M.Z., Darrigran, G., Wang, Z.Y., et al. (2015) Experimental Study on Control of Limnoperna fortunei Biofouling in Water Transfer Tunnels. Journal of Hydro-Environment Research, 9, 248-258.
https://doi.org/10.1016/j.jher.2014.06.006
[23] Matsui, K., Fumoto, T. and Kawakami, H. (2018) Testing the Repellent Effects of Construction Materials on the Attachment of the Invasive Golden Mussel, Limnoperna fortunei, in a Japanese Urban Tidal River. Limnology, 20, 131-136.
https://doi.org/10.1007/s10201-018-0559-x
[24] Zhang, C., Xu, M., Wang, Z., Liu, W. and Yu, D. (2017) Experimental Study on the Effect of Turbulence in Pipelines on the Mortality of Limnoperna fortunei Veligers. Ecological Engineering, 109, 101-118.
https://doi.org/10.1016/j.ecoleng.2017.08.024
[25] Xu, M., Darrigran, G., Wang, Z., Zhao, N., Lin, C.C. and Pan, B. (2015) Experimental Study on Control of Limnoperna fortunei Biofouling in Water Transfer Tunnels. Journal of Hydro-Environment Research, 9, 248-258.
https://doi.org/10.1016/j.jher.2014.06.006
[26] 张晨笛, 徐梦珍, 王兆印, 等. 沼蛤幼虫管道湍流灭杀试验研究Ⅱ: 灭杀效果[J]. 水利学报, 2016, 47(12): 1510-1518.
[27] Paolucci, E.M., Ron, L. and Thuesen, E.V. (2022) Metabolic Response to Increasing Environmental Temperature in the Invasive Mussel Limnoperna fortunei. Austral Ecology, 47, 818-827.
https://doi.org/10.1111/aec.13161
[28] Andrade, J.T.M., Cordeiro, N.I.S., Montresor, L.C., Luz, D.M.R., Luz, R.C.R., Martinez, C.B., et al. (2017) Effect of Temperature on Behavior, Glycogen Content, and Mortality in Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae). Journal of Limnology, 77, 189-198.
https://doi.org/10.4081/jlimnol.2017.1658
[29] Paolucci, E.M., Ron, L. and Thuesen, E.V. (2022) Metabolic Response to Increasing Environmental Temperature in the Invasive Mussel Limnoperna fortunei. Austral Ecology, 47, 818-827.
https://doi.org/10.1111/aec.13161
[30] Zhou, N., Zhang, R., Liu, B., Cui, B., Du, Z., Chen, P., et al. (2021) Effects of Ultrasound on Invasive Golden Mussel Limnoperna fortunei Mortality and Tissue Lesions. Science of the Total Environment, 761, Article ID: 144134.
https://doi.org/10.1016/j.scitotenv.2020.144134
[31] 朱耘志, 杨宏伟, 周磊. 基于空化射流技术的淡水壳菜水下清理系统建设与应用[J]. 中国水运(下半月), 2022, 22(12): 53-55.
[32] Li, S., Chen, Y., Gao, Y., Xia, Z. and Zhan, A. (2019) Chemical Oxidants Affect Byssus Adhesion in the Highly Invasive Fouling Mussel Limnoperna fortunei. Science of the Total Environment, 646, 1367-1375.
https://doi.org/10.1016/j.scitotenv.2018.07.434
[33] Calazans, S.H.C., Americo, J.A., Fernandes, F.d.C., Aldridge, D.C. and Rebelo, M.d.F. (2013) Assessment of Toxicity of Dissolved and Microencapsulated Biocides for Control of the Golden Mussel Limnoperna fortunei. Marine Environmental Research, 91, 104-108.
https://doi.org/10.1016/j.marenvres.2013.02.012
[34] Miranda, C.E., Clauser, C.D., Lozano, V.L., Cataldo, D.H. and Pizarro, H.N. (2021) An Invasive Mussel Is in Trouble: How Do Glyphosate, 2, 4-D and Its Mixture Affect Limnoperna fortunei’s Survival? Aquatic Toxicology, 239, Article ID: 105957.
https://doi.org/10.1016/j.aquatox.2021.105957
[35] Siless, G.E., García, M., Pérez, M., Blustein, G. and Palermo, J.A. (2017) Large-scale Purification of Pachydictyol a from the Brown Alga Dictyota Dichotoma Obtained from Algal Wash and Evaluation of Its Antifouling Activity against the Freshwater Mollusk Limnoperna fortunei. Journal of Applied Phycology, 30, 629-636.
https://doi.org/10.1007/s10811-017-1261-9
[36] da Silva Bertão, A.P., Leite, R.V.V., Horodesky, A., Pie, M.R., Zanin, T.L., Netto, O.S.M., et al. (2021) Ecological Interactions between Invasive and Native Fouling Species in the Reservoir of a Hydroelectric Plant. Hydrobiologia, 848, 5169-5185.
https://doi.org/10.1007/s10750-021-04706-7
[37] Silva, I., Naya, D., Teixeira de Mello, F., D’Anatro, A., Tesitore, G., Clavijo, C., et al. (2021) Correction to: Fish vs. Aliens: Predatory Fish Regulate Populations of Limnoperna fortunei Mitigating Impacts on Native Macroinvertebrate Communities. Hydrobiologia, 848, 2303-2303.
https://doi.org/10.1007/s10750-021-04580-3
[38] Rosa, D.M., Santos, G.B., Gomes, P.L.A., Campos, M.C.S. and Dias, J.H.P. (2014) Occurrence of Limnoperna fortunei (Dunker, 1857) in the Fish Diet from a South-Eastern Brazilian Reservoir. Journal of Applied Ichthyology, 31, 188-191.
https://doi.org/10.1111/jai.12623
[39] González‐Bergonzoni, I., Silva, I., Teixeira de Mello, F., D’Anatro, A., Boccardi, L., Stebniki, S., et al. (2020) Evaluating the Role of Predatory Fish Controlling the Invasion of the Asian Golden Mussel Limnoperna fortunei in a Subtropical River. Journal of Applied Ecology, 57, 717-728.
https://doi.org/10.1111/1365-2664.13573
[40] Vieira, J.P. and Lopes, M.N. (2013) Size-Selective Predation of the Catfish Pimelodus Pintado (Siluriformes: Pimelodidae) on the Golden Mussel Limnoperna fortunei (Bivalvia: Mytilidae). Zoologia (Curitiba), 30, 43-48.
https://doi.org/10.1590/s1984-46702013000100005
[41] Zhao, N., Xu, M., Blanckaert, K., Qiao, C., Zhou, H. and Niu, X. (2019) Study of Factors Influencing the Invasion of Golden Mussels (Limnoperna fortunei) in Water Transfer Projects. Aquatic Ecosystem Health & Management, 22, 385-395.
https://doi.org/10.1080/14634988.2019.1698860
[42] 宋美华, 张保祥, 刘健, 等. 调水工程中淡水壳菜防治方法研究[J]. 中国农村水利水电, 2020(7): 95-99, 103.
[43] Campos, M., de Andrade, A.F.A. and Kunzmann, B. (2014) Modelling of the Potential Distribution of Limnoperna fortunei (Dunker, 1857) on a Global Scale. Aquatic Invasions, 9, 253-265.
https://doi.org/10.3391/ai.2014.9.3.03
[44] Abelando, M., Bobinac, M. and Fiore, J.C. (2020) Assessment of the Efficiency of Controls to Prevent Biologic Invasions at the San Lorenzo Port, Argentina. Environmental Monitoring and Assessment, 192, Article No. 420.
https://doi.org/10.1007/s10661-020-08359-2
[45] Barbosa, N.P.U., Ferreira, J.A., Nascimento, C.A.R., Silva, F.A., Carvalho, V.A., Xavier, E.R.S., et al. (2018) Prediction of Future Risk of Invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with Cellular Automata. Ecological Indicators, 92, 30-39.
https://doi.org/10.1016/j.ecolind.2018.01.005
[46] Morato, M.M., Ávila-Simas, S., Reynalte-Tataje, D.A., Zaniboni-Filho, E., Silveira, H.B. and Normey-Rico, J.E. (2019) Modelling the Ecological Effect of the Golden Mussel Invasion in Uruguay River. IFAC-PapersOnLine, 52, 721-726.
https://doi.org/10.1016/j.ifacol.2019.06.148
[47] Sanson, A.L., Cosenza-Contreras, M., DeMarco, R., Neves, L.X., Mattei, B., Silva, G.G., et al. (2020) The Golden Mussel Proteome and Its Response to Niclosamide: Uncovering Rational Targets for Control or Elimination. Journal of Proteomics, 217, Article ID: 103651.
https://doi.org/10.1016/j.jprot.2020.103651
[48] Perepelizin, P.V. and Boltovskoy, D. (2014) Effects of 254 nm UV Irradiation on the Mobility and Survival of Larvae of the Invasive Fouling Mussel Limnoperna fortunei. Biofouling, 30, 197-202.
https://doi.org/10.1080/08927014.2013.855726

Baidu
map