[1] |
Shukla, P., Das, S., Bag, P. and Dey, A. (2023) Magnetic Materials Based on Heterometallic CrII/III-LnIII Complexes. Inorganic Chemistry Frontiers, 10, 4322-4357. https://doi.org/10.1039/d3qi00193h |
[2] |
Winpenny, R.E.P. (2008) Quantum Information Processing Using Molecular Nanomagnets as Qubits. Angewandte Chemie International Edition, 47, 7992-7994. https://doi.org/10.1002/anie.200802742 |
[3] |
Leuenberger, M.N. and Loss, D. (2001) Quantum Computing in Molecular Magnets. Nature, 410, 789-793. https://doi.org/10.1038/35071024 |
[4] |
Salerno, E.V., Kampf, J.W., Pecoraro, V.L. and Mallah, T. (2021) Magnetic Properties of Two GdIIIfeIII4 Metallacrowns and Strategies for Optimizing the Magnetocaloric Effect of This Topology. Inorganic Chemistry Frontiers, 8, 2611-2623. https://doi.org/10.1039/d1qi00207d |
[5] |
Wang, J., Sun, C., Zheng, Q., Wang, D., Chen, Y., Ju, J., et al. (2023) Lanthanide Single‐Molecule Magnets: Synthetic Strategy, Structures, Properties and Recent Advances. Chemistry—An Asian Journal, 18, e202201297. https://doi.org/10.1002/asia.202201297 |
[6] |
Fan, J., Yu, H., Lin, Y., Qi, M., Kong, X., Sun, C., et al. (2024) An Organophosphate 3d-4f Heterometallic Polyoxoniobate Nanowire. Nanoscale, 16, 12420-12423. https://doi.org/10.1039/d4nr01619j |
[7] |
Wang, H., Zhu, Z., Peng, J. and Zou, H. (2021) Heterometallic 3d/4f-Metal Complexes: Structure and Magnetism. Journal of Cluster Science, 33, 1299-1325. https://doi.org/10.1007/s10876-021-02084-7 |
[8] |
Bartholomew, A.K., Meirzadeh, E., Stone, I.B., Koay, C.S., Nuckolls, C., Steigerwald, M.L., et al. (2022) Superatom Regiochemistry Dictates the Assembly and Surface Reactivity of a Two-Dimensional Material. Journal of the American Chemical Society, 144, 1119-1124. https://doi.org/10.1021/jacs.1c12072 |
[9] |
Jin, P., Yu, K., Luo, Q., Liu, Y., Zhai, Y. and Zheng, Y. (2022) Tetraanionic arachno‐Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single‐Molecule Magnets. Angewandte Chemie International Edition, 61, e202203285. https://doi.org/10.1002/anie.202203285 |
[10] |
McClain, K.R., Kwon, H., Chakarawet, K., Nabi, R., Kragskow, J.G.C., Chilton, N.F., et al. (2023) A Trinuclear Gadolinium Cluster with a Three-Center One-Electron Bond and an S=11 Ground State. Journal of the American Chemical Society, 145, 8996-9002. https://doi.org/10.1021/jacs.3c00182 |
[11] |
Wang, J., Li, Q., Wu, S., Chen, Y., Wan, R., Huang, G., et al. (2021) Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown. Angewandte Chemie International Edition, 60, 5299-5306. https://doi.org/10.1002/anie.202014993 |
[12] |
Münzfeld, L., Gillhuber, S., Hauser, A., Lebedkin, S., Hädinger, P., Knöfel, N.D., et al. (2023) Synthesis and Properties of Cyclic Sandwich Compounds. Nature, 620, 92-96. https://doi.org/10.1038/s41586-023-06192-4 |
[13] |
Neumann, T., Thompson, B.C., Hebron, D., Graycon, D.M., Collauto, A., Roessler, M.M., et al. (2024) Heterobimetallic 3d-4f Complexes Supported by a Schiff-Base Tripodal Ligand. Dalton Transactions, 53, 9921-9932. https://doi.org/10.1039/d3dt03760f |
[14] |
Wang, H., Zhang, K., Song, Y. and Pan, Z. (2021) Recent Advances in 3d-4f Magnetic Complexes with Several Types of Non-Carboxylate Organic Ligands. Inorganica Chimica Acta, 521, Article 120318. https://doi.org/10.1016/j.ica.2021.120318 |
[15] |
Peng, Y. and Powell, A.K. (2021) What Do 3d-4f Butterflies Tell Us? Coordination Chemistry Reviews, 426, Article 213490. https://doi.org/10.1016/j.ccr.2020.213490 |
[16] |
Oyarzabal, I., Echenique-Errandonea, E., San Sebastián, E., Rodríguez-Diéguez, A., Seco, J.M. and Colacio, E. (2021) Synthesis, Structural Features and Physical Properties of a Family of Triply Bridged Dinuclear 3d-4f Complexes. Magnetochemistry, 7, Article 22. https://doi.org/10.3390/magnetochemistry7020022 |
[17] |
Dey, A., Bag, P., Kalita, P. and Chandrasekhar, V. (2021) Heterometallic CuII-lnIII Complexes: Single Molecule Magnets and Magnetic Refrigerants. Coordination Chemistry Reviews, 432, Article 213707. https://doi.org/10.1016/j.ccr.2020.213707 |
[18] |
Vincent, A.H., Whyatt, Y.L., Chilton, N.F. and Long, J.R. (2023) Strong Axiality in a Dysprosium(III) Bis(Borolide) Complex Leads to Magnetic Blocking at 65 K. Journal of the American Chemical Society, 145, 1572-1579. https://doi.org/10.1021/jacs.2c08568 |
[19] |
Wang, Y., Luo, Q. and Zheng, Y. (2024) Organolanthanide Single‐Molecule Magnets with Heterocyclic Ligands. Angewandte Chemie International Edition, e202407016. https://doi.org/10.1002/anie.202407016 |
[20] |
Kajiwara, T., Takahashi, K., Hiraizumi, T., Takaishi, S. and Yamashita, M. (2009) Coordination Enhancement of Single-Molecule Magnet Behavior of Tb(III)-Cu(II) Dinuclear Systems. Polyhedron, 28, 1860-1863. https://doi.org/10.1016/j.poly.2009.02.010 |
[21] |
Ishida, T., Watanabe, R., Fujiwara, K., Okazawa, A., Kojima, N., Tanaka, G., et al. (2012) Exchange Coupling in TbCu and DyCu Single-Molecule Magnets and Related Lanthanide and Vanadium Analogs. Dalton Transactions, 41, 13609-13619. https://doi.org/10.1039/c2dt31169k |
[22] |
Mori, F., Nyui, T., Ishida, T., Nogami, T., Choi, K. and Nojiri, H. (2006) Oximate-Bridged Trinuclear Dy-Cu-Dy Complex Behaving as a Single-Molecule Magnet and Its Mechanistic Investigation. Journal of the American Chemical Society, 128, 1440-1441. https://doi.org/10.1021/ja057183f |
[23] |
Chen, J., Yan, H., Wang, T. and Sun, W. (2024) Heteronuclear Complexes [MDyM](M=Cu; Zn; Ni) Constructed by Schiff Base Ligands with Different Amine Backbone Exhibiting Significant Single-Molecule Magnets. Journal of Molecular Structure, 1311, Article 138473. https://doi.org/10.1016/j.molstruc.2024.138473 |
[24] |
Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. and Mrozinski, J. (2003) A Tetranuclear 3d-4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. Journal of the American Chemical Society, 126, 420-421. https://doi.org/10.1021/ja037365e |
[25] |
Huang, X., Zhou, C., Wei, H. and Wang, X. (2013) End-on Azido-Bridged 3d-4f Complexes Showing Single-Mole-cule-Magnet Property. Inorganic Chemistry, 52, 7314-7316. https://doi.org/10.1021/ic400986y |
[26] |
Heras Ojea, M.J., Milway, V.A., Velmurugan, G., Thomas, L.H., Coles, S.J., Wilson, C., et al. (2016) Enhancement of TbIII-CuII Single‐Molecule Magnet Performance through Structural Modification. Chemistry—A European Journal, 22, 12839-12848. https://doi.org/10.1002/chem.201601971 |
[27] |
Alexandropoulos, D.I., Cunha-Silva, L., Tang, J. and Stamatatos, T.C. (2018) Heterometallic Cu/Ln Cluster Chemistry: Ferromagnetically-Coupled {Cu4Ln2} Complexes Exhibiting Single-Molecule Magnetism and Magnetocaloric Properties. Dalton Transactions, 47, 11934-11941. https://doi.org/10.1039/c8dt01780h |
[28] |
Wang, J., Ruan, Z., Li, Q., Chen, Y., Huang, G., Liu, J., et al. (2019) Slow Magnetic Relaxation in a {EuCu5} Metallacrown. Dalton Transactions, 48, 1686-1692. https://doi.org/10.1039/c8dt04814b |
[29] |
Dey, A., Das, S., Kundu, S., Mondal, A., Rouzières, M., Mathonière, C., et al. (2017) Heterometallic Heptanuclear [Cu5Ln2] (Ln=Tb, Dy, and Ho) Single-Molecule Magnets Organized in One-Dimensional Coordination Polymeric Network. Inorganic Chemistry, 56, 14612-14623. https://doi.org/10.1021/acs.inorgchem.7b02450 |
[30] |
Zhao, X., Li, G., Ma, J. and Liu, W. (2020) Two Octanuclear {Cu4Ln4} (Ln=Dy or Tb) Complexes with a Butterfly-Shaped Unit Exhibiting Zero-Field Single-Molecule Magnet Behavior. Inorganic Chemistry, 59, 2328-2336. https://doi.org/10.1021/acs.inorgchem.9b03137 |
[31] |
Liu, J., Chen, Y., Li, Q., Gómez-Coca, S., Aravena, D., Ruiz, E., et al. (2013) Two 3d-4f Nanomagnets Formed via a Two-Step in Situ Reaction of Picolinaldehyde. Chemical Communications, 49, 6549-6551. https://doi.org/10.1039/c3cc43200a |
[32] |
Zhou, G., Han, T., Ding, Y., Chilton, N.F. and Zheng, Y. (2017) Metallacrowns as Templates for Diabolo‐Like {LnCu8} Complexes with Nearly Perfect Square Antiprismatic Geometry. Chemistry—A European Journal, 23, 15617-15622. https://doi.org/10.1002/chem.201703830 |
[33] |
Wang, J., Li, Q., Wu, S., Chen, Y., Wan, R., Huang, G., et al. (2021) Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown. Angewandte Chemie International Edition, 60, 5299-5306. https://doi.org/10.1002/anie.202014993 |
[34] |
Aronica, C., Pilet, G., Chastanet, G., Wernsdorfer, W., Jacquot, J. and Luneau, D. (2006) A Nonanuclear Dysprosium(III)-Copper(II) Complex Exhibiting Single‐Molecule Magnet Behavior with Very Slow Zero‐Field Relaxation. Angewandte Chemie International Edition, 45, 4659-4662. https://doi.org/10.1002/anie.200600513 |
[35] |
Costes, J., Dahan, F. and Wernsdorfer, W. (2005) Heterodinuclear Cu-Tb Single-Molecule Magnet. Inorganic Chemistry, 45, 5-7. https://doi.org/10.1021/ic050563h |
[36] |
Han, Y. and Huynh, H.V. (2011) Pyrazolin-4-Ylidenes: A New Class of Intriguing Ligands. Dalton Transactions, 40, 2141-2147. https://doi.org/10.1039/c0dt01037e |
[37] |
Kajiwara, T., Nakano, M., Takahashi, K., Takaishi, S. and Yamashita, M. (2010) Structural Design of Easy‐Axis Magnetic Anisotropy and Determination of Anisotropic Parameters of LnIII-CuII Single‐Molecule Magnets. Chemistry—A European Journal, 17, 196-205. https://doi.org/10.1002/chem.201002434 |
[38] |
Langley, S.K., Ungur, L., Chilton, N.F., Moubaraki, B., Chibotaru, L.F. and Murray, K.S. (2011) Structure, Magnetism and Theory of a Family of Nonanuclear CuII5LnIII4-Triethanolamine Clusters Displaying Single‐Molecule Magnet Behaviour. Chemistry—A European Journal, 17, 9209-9218. https://doi.org/10.1002/chem.201100218 |
[39] |
Chandrasekhar, V., Dey, A., Das, S., Rouzières, M. and Clérac, R. (2013) Syntheses, Structures, and Magnetic Properties of a Family of Heterometallic Heptanuclear [Cu5Ln2] (Ln=Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) Complexes: Observation of SMM Behavior for the Dy(III) and Ho(III) Analogues. Inorganic Chemistry, 52, 2588-2598. https://doi.org/10.1021/ic302614k |
[40] |
Feltham, H.L.C., Clérac, R., Ungur, L., Chibotaru, L.F., Powell, A.K. and Brooker, S. (2013) By Design: A Macrocyclic 3d-4f Single-Molecule Magnet with Quantifiable Zero-Field Slow Relaxation of Magnetization. Inorganic Chemistry, 52, 3236-3240. https://doi.org/10.1021/ic302735j |
[41] |
Liu, J., Lin, W., Chen, Y., Gómez‐Coca, S., Aravena, D., Ruiz, E., et al. (2013) CuII-GdIII Cryogenic Magnetic Refrigerants and Cu8Dy9 Single‐Molecule Magnet Generated by in Situ Reactions of Picolinaldehyde and Acetylpyridine: Experimental and Theoretical Study. Chemistry—A European Journal, 19, 17567-17577. https://doi.org/10.1002/chem.201303275 |
[42] |
Escobar, L.B.L., Guedes, G.P., Soriano, S., Speziali, N.L., Jordão, A.K., Cunha, A.C., et al. (2014) New Families of Hetero-Tri-Spin 2p-3d-4f Complexes: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 53, 7508-7517. https://doi.org/10.1021/ic5008044 |
[43] |
Ghosh, S., Ida, Y., Ishida, T. and Ghosh, A. (2014) Linker Stoichiometry-Controlled Stepwise Supramolecular Growth of a Flexible Cu2Tb Single Molecule Magnet from Monomer to Dimer to One-Dimensional Chain. Crystal Growth & Design, 14, 2588-2598. https://doi.org/10.1021/cg500290m |
[44] |
Hu, K., Wu, S., Cui, A. and Kou, H. (2014) Synthesis, Structure, and Magnetic Properties of Heterotrimetallic Tetranuclear Complexes. Transition Metal Chemistry, 39, 713-718. https://doi.org/10.1007/s11243-014-9854-5 |
[45] |
Kettles, F.J., Milway, V.A., Tuna, F., Valiente, R., Thomas, L.H., Wernsdorfer, W., et al. (2014) Exchange Interactions at the Origin of Slow Relaxation of the Magnetization in {TbCu3} and {DyCu3} Single-Molecule Magnets. Inorganic Chemistry, 53, 8970-8978. https://doi.org/10.1021/ic500885r |
[46] |
Xue, S., Guo, Y., Zhao, L., Zhang, H. and Tang, J. (2014) Molecular Magnetic Investigation of a Family of Octanuclear [Cu6Ln2] Nanoclusters. Inorganic Chemistry, 53, 8165-8171. https://doi.org/10.1021/ic501226v |
[47] |
Dermitzaki, D., Raptopoulou, C.P., Psycharis, V., Escuer, A., Perlepes, S.P. and Stamatatos, T.C. (2015) Nonemployed Simple Carboxylate Ions in Well-Investigated Areas of Heterometallic Carboxylate Cluster Chemistry: A New Family of {CuII4LnIII8} Complexes Bearing tert-Butylacetate Bridging Ligands. Inorganic Chemistry, 54, 7555-7561. https://doi.org/10.1021/acs.inorgchem.5b01179 |
[48] |
Wang, X., Hu, P., Li, Y. and Li, L. (2014) Construction of Nitronyl Nitroxide‐Based 3d-4f Clusters: Structure and Magnetism. Chemistry—A European Journal, 10, 325-328. https://doi.org/10.1002/asia.201403165 |
[49] |
Wu, J., Zhao, L., Guo, M. and Tang, J. (2015) Constructing Supramolecular Grids: From 4f Square to 3d-4f Grid. Chemical Communications, 51, 17317-17320. https://doi.org/10.1039/c5cc06960b |
[50] |
Dhers, S., Feltham, H.L.C., Rouzières, M., Clérac, R. and Brooker, S. (2016) Macrocyclic {3d-4f} SMMs as Building Blocks for 1D-Polymers: Selective Bridging of 4f Ions by Use of an O-Donor Ligand. Dalton Transactions, 45, 18089-18093. https://doi.org/10.1039/c6dt03734h |
[51] |
Gupta, T., Beg, M.F. and Rajaraman, G. (2016) Role of Single-Ion Anisotropy and Magnetic Exchange Interactions in Suppressing Zero-Field Tunnelling in {3d-4f} Single Molecule Magnets. Inorganic Chemistry, 55, 11201-11215. https://doi.org/10.1021/acs.inorgchem.6b01831 |
[52] |
Wu, J., Zhao, L., Zhang, L., Li, X., Guo, M., Powell, A.K., et al. (2016) Macroscopic Hexagonal Tubes of 3d-4f Metallocycles. Angewandte Chemie International Edition, 55, 15574-15578. https://doi.org/10.1002/anie.201609539 |
[53] |
Wu, J., Zhao, L., Zhang, L., Li, X., Guo, M. and Tang, J. (2016) Metallosupramolecular Coordination Complexes: The Design of Heterometallic 3d-4f Gridlike Structures. Inorganic Chemistry, 55, 5514-5519. https://doi.org/10.1021/acs.inorgchem.6b00529 |
[54] |
Alexandropoulos, D.I., Poole, K.M., Cunha-Silva, L., Ahmad Sheikh, J., Wernsdorfer, W., Christou, G., et al. (2017) A Family of ‘Windmill’-Like {Cu6Ln12} Complexes Exhibiting Single-Molecule Magnetism Behavior and Large Magnetic Entropy Changes. Chemical Communications, 53, 4266-4269. https://doi.org/10.1039/c7cc01382e |
[55] |
Biswas, S., Bag, P., Das, S., Kundu, S., van Leusen, J., Kögerler, P., et al. (2017) Heterometallic [Cu2Ln3] (Ln=DyIII, GdIII and HoIII) and [Cu4Ln2] (Ln=DyIII and HoIII) Compounds: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry, 2017, 1129-1142. https://doi.org/10.1002/ejic.201601210 |
[56] |
Kühne, I.A., Griffiths, K., Hutchings, A., Townrow, O.P.E., Eichhöfer, A., Anson, C.E., et al. (2017) Stepwise Investigation of the Influences of Steric Groups versus Counterions to Target Cu/Dy Complexes. Crystal Growth & Design, 17, 5178-5190. https://doi.org/10.1021/acs.cgd.7b00648 |
[57] |
Li, C., Li, H., Xie, J., Yang, M., Wang, X. and Li, L. (2017) {[Ln(hfac)3]2[Cu(hfac)2]3(NIT‐Pyrim)2(H2O)2} (LnIII=Gd, Ho, Er): Unique Nitronyl Nitroxide Bridged 3d-4f Heterometallic Clusters. European Journal of Inorganic Chemistry, 2018, 525-530. https://doi.org/10.1002/ejic.201700576 |
[58] |
Ueno, T., Fujinami, T., Matsumoto, N., Furusawa, M., Irie, R., Re, N., et al. (2017) Circular and Chainlike Copper(II)-Lanthanide(III) Complexes Generated by Assembly Reactions of Racemic and Chiral Copper(II) Cross-Linking Ligand Complexes with LnIII(No3)3·6H2O (LnIII=GdIII, TbIII, DyIII). Inorganic Chemistry, 56, 1679-1695. https://doi.org/10.1021/acs.inorgchem.6b02668 |
[59] |
Yang, M., Xie, J., Sun, Z., Li, L. and Sutter, J. (2017) Slow Magnetic Relaxation in Ladder-Type and Single-Strand 2p-3d-4f Heterotrispin Chains. Inorganic Chemistry, 56, 13482-13490. https://doi.org/10.1021/acs.inorgchem.7b02204 |
[60] |
Dermitzaki, D., Bistola, O., Pissas, M., Psycharis, V., Sanakis, Y. and Raptopoulou, C.P. (2018) Heptanuclear Heterometallic Cu 5 Ln 2 (Ln=Gd, Tb) Complexes: Synthesis, Crystal Structures, and Magnetic Properties Studies. Polyhedron, 150, 47-53. https://doi.org/10.1016/j.poly.2018.05.003 |
[61] |
Dey, A., Das, S., Palacios, M.A., Colacio, E. and Chandrasekhar, V. (2018) Single‐Molecule Magnet and Magnetothermal Properties of Two‐Dimensional Polymers Containing Heterometallic [Cu5Ln2] (Ln=GdIII and DyIII) Motifs. European Journal of Inorganic Chemistry, 2018, 1645-1654. https://doi.org/10.1002/ejic.201701429 |
[62] |
Dey, B., Roy, S., Mondal, A.K., Santra, A. and Konar, S. (2018) Zero Field SMM Behavior and Magnetic Refrigeration in Rare Heterometallic Double Stranded Helicates of Cu2Ln2 (Ln=Dy, Tb, Gd). European Journal of Inorganic Chemistry, 2018, 2429-2436. https://doi.org/10.1002/ejic.201800075 |
[63] |
Li, H., Sun, Z., Sun, J., Xi, L., Guo, J., Sun, G., et al. (2018) Single-Molecule Magnet Behavior in a CuII-Decorated {DyIII2} Complex with Nitronyl Nitroxide Biradicals. Journal of Materials Chemistry C, 6, 2060-2068. https://doi.org/10.1039/c7tc05377k |
[64] |
Worrell, A., Sun, D., Mayans, J., Lampropoulos, C., Escuer, A. and Stamatatos, T.C. (2018) Oximato-Based Ligands in 3d/4f-Metal Cluster Chemistry: A Family of {Cu3Ln} Complexes with a “Propeller”-Like Topology and Single-Molecule Magnetic Behavior. Inorganic Chemistry, 57, 13944-13952. https://doi.org/10.1021/acs.inorgchem.8b02495 |
[65] |
Wu, J., Guo, M., Li, X., Zhao, L., Sun, Q., Layfield, R.A., et al. (2018) From Double-Shelled Grids to Supramolecular Frameworks. Chemical Communications, 54, 12097-12100. https://doi.org/10.1039/c8cc06411c |
[66] |
Wu, J., Li, X., Guo, M., Zhao, L., Zhang, Y. and Tang, J. (2018) Realization of Toroidal Magnetic Moments in Heterometallic 3d-4f Metallocycles. Chemical Communications, 54, 1065-1068. https://doi.org/10.1039/c7cc09391h |
[67] |
Chen, Y., Long, Q., Hu, Z., Wang, H., Huang, Z., Chen, W., et al. (2019) Synthesis, Crystal Structures and Magnetic Properties of a Series of Pentanuclear Heterometallic [CuII3LnIII2] (Ln=Ho, Dy, and Gd) Complexes Containing Mixed Organic Ligands. New Journal of Chemistry, 43, 8101-8108. https://doi.org/10.1039/c9nj00892f |
[68] |
Dermitzaki, D., Psycharis, V., Sanakis, Y., Stamatatos, T.C., Pissas, M. and Raptopoulou, C.P. (2019) Extending the Family of Heptanuclear Heterometallic Cu5Ln2 (Ln=Gd, Tb, Dy) Complexes: Synthesis, Crystal Structures, Magnetic and Magnetocaloric Studies. Polyhedron, 169, 135-143. https://doi.org/10.1016/j.poly.2019.05.004 |
[69] |
Mahapatra, P., Koizumi, N., Kanetomo, T., Ishida, T. and Ghosh, A. (2019) A Series of CuII-LnIII Complexes of an N2O3 Donor Asymmetric Ligand and a Possible CuII-TbIII SMM Candidate in No Bias Field. New Journal of Chemistry, 43, 634-643. https://doi.org/10.1039/c8nj03512a |
[70] |
Maity, S., Mondal, A., Konar, S. and Ghosh, A. (2019) The Role of 3d-4f Exchange Interaction in SMM Behaviour and Magnetic Refrigeration of Carbonato Bridged CuII2LnIII2 (Ln=Dy, Tb and Gd) Complexes of an Unsymmetrical N2O4 Donor Ligand. Dalton Transactions, 48, 15170-15183. https://doi.org/10.1039/c9dt02627d |
[71] |
Shi, J.Y., Chen, P.Y., Wu, M.Z., Tian, L. and Liu, Z.Y. (2019) Synthesis of a Series of Hetero-Multi-Spin Ln2Cu3 Complexes Based on a Methyl-Pyrazole Nitronyl Nitroxide Radical with Slow Magnetic Relaxation Behaviors. Dalton Transactions, 48, 9187-9193. https://doi.org/10.1039/c9dt00981g |
[72] |
Wang, K., Sun, J., Xi, L., Lu, J., Jing, P. and Li, L. (2019) Heterometallic Ln-Cu Complexes Derived from a Phenyl Pyrimidyl Substituted Nitronyl Nitroxide Biradical. Dalton Transactions, 48, 14383-14389. https://doi.org/10.1039/c9dt03081f |
[73] |
Zhang, H., Yang, H., Yang, J., Li, D. and Dou, J. (2019) Single Molecular Magnet Behavior for a Copper(II)-Terbium(III) 15-Metallacrown-5 Complex Based on Pyrazinehydroxamic Acid. Inorganica Chimica Acta, 495, Article 119014. https://doi.org/10.1016/j.ica.2019.119014 |
[74] |
Chang, W., Yang, H., Tian, H., Li, D. and Dou, J. (2020) 3d-4f Metallacrown Complexes with a New Sandwich Core: Synthesis, Structures and Single Molecule Magnet Behavior. New Journal of Chemistry, 44, 14145-14150. https://doi.org/10.1039/d0nj00292e |
[75] |
Maity, S., Bhunia, P., Ichihashi, K., Ishida, T. and Ghosh, A. (2020) SMM Behaviour of Heterometallic Dinuclear CuIILnIII (Ln=Tb and Dy) Complexes Derived from N2O3 Donor Unsymmetrical Ligands. New Journal of Chemistry, 44, 6197-6205. https://doi.org/10.1039/d0nj00193g |
[76] |
Yang, M., Liang, X., Zhang, Y., Ouyang, Z. and Dong, W. (2020) A Family of 3d-4f Cu-Ln Ladder-Like Complexes: Synthesis, Structures and Magnetic Properties. Polyhedron, 180, Article 114435. https://doi.org/10.1016/j.poly.2020.114435 |
[77] |
Ghosh, T.K., Maity, S., Mayans, J. and Ghosh, A. (2020) Family of Isomeric CuII-LnIII (Ln=Gd, Tb, and Dy) Complexes Presenting Field-Induced Slow Relaxation of Magnetization Only for the Members Containing GdIII. Inorganic Chemistry, 60, 438-448. https://doi.org/10.1021/acs.inorgchem.0c03129 |
[78] |
Li, H., Jing, P., Lu, J., Xi, L., Wang, Q., Ding, L., et al. (2021) Multifunctional Properties of {CuII2LnIII2} Systems Involving Nitrogen-Rich Nitronyl Nitroxide: Single-Molecule Magnet Behavior, Luminescence, Magnetocaloric Effects and Heat Capacity. Dalton Transactions, 50, 2854-2863. https://doi.org/10.1039/d0dt04344c |
[79] |
Zhang, S., Fan, X., Du, R., Shen, B., Song, X., Wei, X., et al. (2021) Synthesis, Crystal Structures and Magnetism of CuIILnIII N2O4-Donor Coordination Compounds Involving Dicyanamides. Polyhedron, 206, Article 115336. https://doi.org/10.1016/j.poly.2021.115336 |
[80] |
Zhang, Y., Liang, X., Ouyang, Z. and Yang, M. (2021) Two 2p-3d-4f Complexes Constructed from Functionalized Nitronyl Nitroxides: Synthesis, Structure and Magnetic Properties. Journal of Molecular Structure, 1225, Article 129155. https://doi.org/10.1016/j.molstruc.2020.129155 |
[81] |
Dais, T.N., Takano, R., Yamaguchi, Y., Ishida, T. and Plieger, P.G. (2022) Metallocyclic CuII-LnIII Single-Molecule Magnets from the Self-Assembly of 1,4-Diformylnaphthalene-2,3-Diol. ACS Omega, 7, 5537-5546. https://doi.org/10.1021/acsomega.1c07001 |
[82] |
Liu, C., Zhu, S., Lu, Y., Hao, X. and Wen, H. (2023) Homochiral Cu6Dy3 Single-Molecule Magnets Displaying Proton Conduction and a Strong Magneto-Optical Faraday Effect. Inorganic Chemistry Frontiers, 10, 3714-3722. https://doi.org/10.1039/d3qi00634d |