1. 引言
自从Fisher[1]和Kolmogorov等[2]把行波解的概念引入到反应扩散方程以来,由于其在数学理论、生态学和物理学反应扩散方程模型中的重要性,迅速引起广大学者的关注。
自然界中,生物为争夺生存资源或追求共同利益而展现的竞争与合作现象极为普遍[3]。在种群动力学中,Lotka-Volterra模型作为经典模型,广泛用于描述种群内以及不同种群间的作用关系[4][5]。而具有空间扩散项的两个种群的Lotka-Volterra合作系统是生物数学研究领域中比较典型且比较重要的模型之一[6]-[8],其模型为:
(1.1)
其中,
和
为种群u和v在时刻t位置x处的种群密度,
为物种的扩散系数,
为物种的内禀增长率,
为物种的内部拥挤系数,
为物种的之间的合作系数.系统(1.1)中所有的系数均为正常数。许多学者对系统(1.1)作了大量的研究。
物种的繁殖由于受环境、妊娠及成熟过程等各方面因素的影响,物种密度在时间上的滞后是在所难免的,所以,具有时滞的Lotka-Volterra合作系统成为学者们关注的热点[9]-[12]。其中,Yang和Wu[13]研究了移动环境中时滞扩散Lotka-Volterra合作系统:
(1.2)
利用单调迭代方法和上下解的技巧证明了系统(1.2)的行波解[14]-[16]。
受以上模型及文献的启发,本文研究如下移动环境下具有局部扩散和时滞的Lotka-Volterra合作模型
(1.3)
行波解的存在性,其中
和
为种群u和v在时刻t位置x处的种群密度,
,
,
为物种的扩散速率,
为种群间的合作强度,
为种间合作时滞。
在本文的研究中,做如下假设:
(H1)
。
(H2)
是
中的连续不增函数,
有限且
。
2. 预备知识
定义
为
上全体连续函数构成的空间。对任意的
,若
,则记
;若
且
,则记
。记
模型(1.3)的行波解是具有如下特殊形式的平移不变解:
(2.1)
其中
是行波的轮廓,
是波速。
将式(2.1)代入式(1.3),得到如下波剖系统:
(2.2)
经计算,式(2.2)的极限系统在负无穷远处存在唯一的正平衡点
,其中
接下来,我们将证明连接平衡点
和
的行波解,并且满足边界条件
(2.3)
为此,还需做如下假设:(H3)
,
。
首先,给出上、下解的定义。
定义2.1.若存在一列有限点列
使得连续函数
在
上满足
其中,
,
在
处连续,则称
为系统(2.2)的上(下)解。
构造一对上、下解。
定义函数
(2.4)
参数
利用凸函数的性质可得出以下结论.
引理2.2对任意
,
有两个不同的正根
,
有两个不同的正根
,且满足
先构造系统(2.2)的下解。令
,
,其中常数
,
。记
,易知
。选择
使得
和
。
综上所述,定义连续函数
引理2.3对任意
,当
足够大时,
是系统(2.2)的一个下解。
证明.方便起见,令
要证
是一个下解,只需证
和
。
首先证明
。
(i) 当
时,
,此时
。
(ii) 当
时,
,
,则有
当
足够大时,最后一个不等式成立。同理可得,对任意的
,都有
。
显然,
是系统(2.2)的一个下解,证毕。
接下来构造上解。
由假设(H3),可以选择
足够大,其中
使得
,
。定义函数
易知
,当
时
。这意味着存在
使得
。
由此定义连续函数
引理2.3对任意
,
是系统(2.2)的一个上解。
证明.因为
,所以
。
要证
是系统(2.2)的一个上解,只需证明:
首先证明
。
(i)当
时,
,有
(ii)当
时,
,有
同理可得,对任意的
,
,故
是系统(2.2)的一个上解,证毕。
因为
是系统(2.2)的一对上下解,现给出波廓集
的定义:
(2.5)
令
,则方程
有两个实根:
定义二阶微分算子
和它们的逆
分别为
容易验证,对任意的
都有
。此外,若
,则
。
对任意
,定义算子:
定义算子
,其中
。由于
且
所以
.
此时,系统(2.2)解的存在性问题转化为算子F的不动点的存在性问题。
下面证明F的一些性质。
引理2.4当
,则F是一个非减算子且
。如果
关于
是非增的,那么
关于
也是非增的。
证明.首先证F是一个非减算子。
对任意
且
,则有
同理可得,
。
由F1和F2的定义可知
,这表明F是一个非减算子。
若
关于
是非增函数,则对任意
,有
类似可证
。
对任意
,当
时,有
则
故对任意
,有
,即
关于
也是非增的。
下面证
。
由
的定义可知,要证
,即证对所有的
都有
。
由于
,
是一对上下解,则
即
(2.6)
又因为F是一个非减算子,所以对任意
,有
(2.7)
由式(2.6)和式(2.7)可得,
。证毕。
3. 行波解的存在性
定理3.1假设(H1)~(H3)成立,则对于任意给定的
,系统(2.2)存在连接
和
的行波解
,且满足边界条件(2.3)。
证明.考虑以下迭代
选取初始迭代
因为
是非增函数,由引理(2.4)可知,对于每个给定的n,
关于
是非增的。
令
显然,
是一个非增函数且
。
此外,
逐点收敛到
,其中
。
由于
根据Lebesgue控制收敛定理,可以得到
类似可得
。容易看出,
满足系统(2.2),即为模型(1.1)的行波解。
接下来证明
满足边界条件(2.3)。
我们注意到
即
。由于
是非增有界的,因此存在常数
,
,使得
,
则有
根据L’Hopital法则可得,
同理
故
上述公式计算可得
或
当
且
时,因为
非增且
,那么
时,
,这与当
时
矛盾。
因此
即
,所以
满足边界条件(2.3)。证毕。