[1] |
Castello, N.A., Green, K.N. and LaFerla, F.M. (2012) Genetic Knockdown of Brain-Derived Neurotrophic Factor in 3xTg-AD Mice Does Not Alter Aβ or Tau Pathology. PLOS ONE, 7, e39566. https://doi.org/10.1371/journal.pone.0039566 |
[2] |
Sun, Y., Wang, Z. and Huang, H. (2023) Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cellular and Molecular Neurobiology, 43, 3115-3136. https://doi.org/10.1007/s10571-023-01365-1 |
[3] |
Drzezga, A., Grimmer, T., Henriksen, G., Mühlau, M., Perneczky, R., Miederer, I., et al. (2009) Effect of APOE Genotype on Amyloid Plaque Load and Gray Matter Volume in Alzheimer Disease. Neurology, 72, 1487-1494. https://doi.org/10.1212/wnl.0b013e3181a2e8d0 |
[4] |
Grimmer, T., Tholen, S., Yousefi, B.H., Alexopoulos, P., Förschler, A., Förstl, H., et al. (2010) Progression of Cerebral Amyloid Load Is Associated with the Apolipoprotein E Ε4 Genotype in Alzheimer’s Disease. Biological Psychiatry, 68, 879-884. https://doi.org/10.1016/j.biopsych.2010.05.013 |
[5] |
Ge, T., Sabuncu, M.R., Smoller, J.W., Sperling, R.A. and Mormino, E.C. (2018) Dissociable Influences of APOE Ε4 and Polygenic Risk of AD Dementia on Amyloid and Cognition. Neurology, 90, e1605-e1612. https://doi.org/10.1212/wnl.0000000000005415 |
[6] |
Wisniewski, T. and Drummond, E. (2020) APOE-amyloid Interaction: Therapeutic Targets. Neurobiology of Disease, 138, Article ID: 104784. https://doi.org/10.1016/j.nbd.2020.104784 |
[7] |
Liu, Y., Tan, L., Wang, H., Liu, Y., Hao, X., Tan, C., et al. (2015) Multiple Effect of APOE Genotype on Clinical and Neuroimaging Biomarkers across Alzheimer’s Disease Spectrum. Molecular Neurobiology, 53, 4539-4547. https://doi.org/10.1007/s12035-015-9388-7 |
[8] |
Kantarci, K., Lowe, V., Przybelski, S.A., Weigand, S.D., Senjem, M.L., Ivnik, R.J., et al. (2012) APOE Modifies the Association between Aβ Load and Cognition in Cognitively Normal Older Adults. Neurology, 78, 232-240. https://doi.org/10.1212/wnl.0b013e31824365ab |
[9] |
Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., Swaminathan, S., Kim, S., et al. (2010) Alzheimer’s Disease Neuroimaging Initiative Biomarkers as Quantitative Phenotypes: Genetics Core Aims, Progress, and Plans. Alzheimer’s & Dementia, 6, 265-273. https://doi.org/10.1016/j.jalz.2010.03.013 |
[10] |
Joshi, A.D., Pontecorvo, M.J., Clark, C.M., Carpenter, A.P., Jennings, D.L., Sadowsky, C.H., et al. (2012) Performance Characteristics of Amyloid PET with Florbetapir F 18 in Patients with Alzheimer’s Disease and Cognitively Normal Subjects. Journal of Nuclear Medicine, 53, 378-384. https://doi.org/10.2967/jnumed.111.090340 |
[11] |
Shaw, L.M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C.M., Aisen, P.S., Petersen, R.C., et al. (2009) Cerebrospinal Fluid Biomarker Signature in Alzheimer’s Disease Neuroimaging Initiative Subjects. Annals of Neurology, 65, 403-413. https://doi.org/10.1002/ana.21610 |
[12] |
Ittner, L.M. and Götz, J. (2010) Amyloid-β and Tau—A Toxic Pas De Deux in Alzheimer’s Disease. Nature Reviews Neuroscience, 12, 67-72. https://doi.org/10.1038/nrn2967 |
[13] |
Gonsalves, D., Jovanovic, K., Da Costa Dias, B. and Weiss, S.F.T. (2012) Global Alzheimer Research Summit: Basic and Clinical Research: Present and Future Alzheimer research. Prion, 6, 7-10. https://doi.org/10.4161/pri.6.1.18854 |
[14] |
Farlow, M.R., He, Y., Tekin, S., Xu, J., Lane, R. and Charles, H.C. (2004) Impact of APOE in Mild Cognitive Impairment. Neurology, 63, 1898-1901. https://doi.org/10.1212/01.wnl.0000144279.21502.b7 |
[15] |
Ramakers, I.H.G.B., Visser, P.J., Aalten, P., Bekers, O., Sleegers, K., van Broeckhoven, C.L., et al. (2008) The Association between APOE Genotype and Memory Dysfunction in Subjects with Mild Cognitive Impairment Is Related to Age and Alzheimer Pathology. Dementia and Geriatric Cognitive Disorders, 26, 101-108. https://doi.org/10.1159/000144072 |
[16] |
Whitehair, D.C., Sherzai, A., Emond, J., Raman, R., Aisen, P.S., Petersen, R.C., et al. (2010) Influence of Apolipoprotein E ε4 on Rates of Cognitive and Functional Decline in Mild Cognitive Impairment. Alzheimer’s & Dementia, 6, 412-419. https://doi.org/10.1016/j.jalz.2009.12.003 |
[17] |
Quintas, J.L., Souza, V.C., Henriques, A.D., Machado‐Silva, W., Toledo, J.O., Córdova, C., et al. (2013) Lack of Association between Apolipoprotein e Genotypes and Cognitive Performance in the Non‐Demented Elderly. Psychogeriatrics, 14, 11-16. https://doi.org/10.1111/psyg.12029 |
[18] |
Aghajanova, L., Horcajadas, J.A., Esteban, F.J. and Giudice, L.C. (2010) The Bone Marrow-Derived Human Mesenchymal Stem Cell: Potential Progenitor of the Endometrial Stromal Fibroblast. Biology of Reproduction, 82, 1076-1087. https://doi.org/10.1095/biolreprod.109.082867 |
[19] |
Becker, C.M., Beaudry, P., Funakoshi, T., Benny, O., Zaslavsky, A., Zurakowski, D., et al. (2011) Circulating Endothelial Progenitor Cells Are Up-Regulated in a Mouse Model of Endometriosis. The American Journal of Pathology, 178, 1782-1791. https://doi.org/10.1016/j.ajpath.2010.12.037 |
[20] |
Zhang, B., Chen, W., Zhang, R., et al. (2015) Relationship between Apolipoprotein E Gene Polymorphism and Mild Cognitive Impairment in Chinese Population: A Meta Analysis. Journal of Southeast University, 34, 83-87. |
[21] |
朱小群, 周霞, 赵伟, 等. 载脂蛋白E基因型对遗忘型轻度认知障碍和阿尔茨海默病患者磁共振波谱的影响[J]. 中华医学杂志, 2019, 99(15): 1156-1161. |
[22] |
谷愉愉, 王丹, 龚晨, 等. ApoE基因多态性与轻度认知障碍的相关性研究[J]. 标记免疫分析与临床, 2021, 28(1): 5-10. |
[23] |
Zhao, N., Liu, C., Qiao, W. and Bu, G. (2018) Apolipoprotein E, Receptors, and Modulation of Alzheimer’s Disease. Biological Psychiatry, 83, 347-357. https://doi.org/10.1016/j.biopsych.2017.03.003 |
[24] |
Zaliaduonyte-Peksiene, D., Simonyte, S., Lesauskaite, V., Vaskelyte, J., Gustiene, O., Mizariene, V., et al. (2013) Left Ventricular Remodelling after Acute Myocardial Infarction: Impact of Clinical, Echocardiographic Parameters and Polymorphism of Angiotensinogen Gene. Journal of the Renin-Angiotensin-Aldosterone System, 15, 286-293. https://doi.org/10.1177/1470320312471228 |
[25] |
王理鑫, 胡春雨, 陈淅泠. 轻度认知功能障碍计算机辅助认知训练与LpPLA2和ApoEε4基因相关分析[J]. 实用医学杂志, 2021, 37(14): 1827-1831. |
[26] |
Chételat, G., Villemagne, V.L., Pike, K.E., Ellis, K.A., Bourgeat, P., Jones, G., et al. (2011) Independent Contribution of Temporal Β-Amyloid Deposition to Memory Decline in the Pre-Dementia Phase of Alzheimer’s Disease. Brain, 134, 798-807. https://doi.org/10.1093/brain/awq383 |
[27] |
Hedden, T., Oh, H., Younger, A.P. and Patel, T.A. (2013) Meta-Analysis of Amyloid-Cognition Relations in Cognitively Normal Older Adults. Neurology, 80, 1341-1348. https://doi.org/10.1212/wnl.0b013e31828ab35d |
[28] |
Landau, S.M., Horng, A. and Jagust, W.J. (2018) Memory Decline Accompanies Subthreshold Amyloid Accumulation. Neurology, 90, e1452-e1460. https://doi.org/10.1212/wnl.0000000000005354 |
[29] |
Tsoy, E., Strom, A., Iaccarino, L., Erlhoff, S.J., Goode, C.A., Rodriguez, A., et al. (2021) Detecting Alzheimer’s Disease Biomarkers with a Brief Tablet-Based Cognitive Battery: Sensitivity to Aβ and Tau Pet. Alzheimer’s Research & Therapy, 13, Article No. 36. https://doi.org/10.1186/s13195-021-00776-w |
[30] |
黄艳露, 郭起浩. 神经心理评估的新进展: 认知功能与脑淀粉样蛋白沉积的关系[J]. 重庆医科大学学报, 2021, 46(11): 1287-1290. |
[31] |
Zhang, C., Kong, M., Wei, H., Zhang, H., Ma, G. and Ba, M. (2020) The Effect of APOE ε4 on Clinical and Structural MRI Markers in Prodromal Alzheimer’s Disease. Quantitative Imaging in Medicine and Surgery, 10, 464-474. https://doi.org/10.21037/qims.2020.01.14 |