黎曼流形上一类非线性薛定谔方程的曲线集中现象
Concentration Phenomena on Curves for Nonlinear Schro¨dinger Equations on Riemannian Manifolds
DOI:10.12677/AAM.2024.138375,PDF,下载: 8浏览: 44
作者:席芳娟:浙江师范大学数学科学学院,浙江 金华
关键词:非线性薛定湾方程黎曼流形集中现象Nonlinear Schr¨odinger EquationRiemannian ManifoldsConcentration Phenomena
摘要:本文主要考虑如下非线性薛定湾方程ε 2gu − V (y)u + Q(y)u p= 0, u > 0, u ∈ H 1(M)其中p > 1, ε > 0 足够小,(M, g) 是R N(N ≥ 3) 中二维无边界的紧致黎曼流形。 假设Γ 是相对于加权泛函∫ ΓV σQ 1/2 −σ静止和非退化的闭合曲线,这里σ = p+1/p-1-1/2 ,在对函数V (y) 和Q(y) 加上某些限制的情况下,当ε → 0 且远离某些特定值时,方程的解存在且集中在曲线Γ 附近,并且在曲线的任何领域外是指数衰减的。
Abstract:In this paper, we mainly consider the following nonlinear Schrodinger Equation ε 2gu − V (y)u + Q(y)u p= 0, u > 0, u ∈ H 1(M), where p > 1, ε > 0 is a small parameter, (M, g) is a compact smooth 2-dimensional Riemannian manifold without boundary in R N(N ≥ 3) . Let Γ be a closed curve, nondegenerate geodesic relative to the weighted arc length ∫ ΓV σQ 1/2 −σ, where σ = p+1/p-1-1/2 . Under some constraints for V (y) and Q (y), we prove the existence of a solution u εconcentrating along the whole of Γ, exponentially small in ε at any positive distance from it, provided that ε is small and away from certain critical numbers.
文章引用:席芳娟. 黎曼流形上一类非线性薛定谔方程的曲线集中现象[J]. 应用数学进展, 2024, 13(8): 3936-3944. https://doi.org/10.12677/AAM.2024.138375

参考文献

[1] Floer, A. and Weinstein, A. (1986) Nonspreading Wave Packets for the Cubic Schro¨dinger Equation with a Bounded Potential. Journal of Functional Analysis, 69, 397-408.
https://doi.org/10.1016/0022-1236(86)90096-0
[2] Ambrosetti, A., Badiale, M. and Cingolani, S. (1997) Semiclassical States of Nonlinear Schro¨dinger Equations. Archive for Rational Mechanics and Analysis, 140, 285-300.
https://doi.org/10.1007/s002050050067
[3] Ambrosetti, A., Malchiodi, A. and Secchi, S. (2001) Multiplicity Results for Some Nonlinear Schro¨dinger Equations with Potentials. Archive for Rational Mechanics and Analysis, 159, 253-271.
https://doi.org/10.1007/s002050100152
[4] Byeon, J. and Wang, Z.-Q. (2002) Standing Waves with a Critical Frequency for Nonlinear Schro¨dinger Equations. Archive for Rational Mechanics and Analysis, 165, 295-316.
https://doi.org/10.1007/s00205-002-0225-6
[5] Cingolani, S. and Lazzo, M. (2000) Multiple Positive Solutions to Nonlinear Schro¨dinger Equa- tions with Competing Potential Functions. Journal of Differential Equations, 160, 118-138.
https://doi.org/10.1006/jdeq.1999.3662
[6] del Pino, M. and Felmer, P. (1996) Local Mountain Passes for Semilinear Elliptic Problems in Unbounded Domains. Calculus of Variations and Partial Differential Equations, 4, 121-137.
https://doi.org/10.1007/s005260050031
[7] del Pino, M. and Felmer, P.L. (1997) Semi-Classical States for Nonlinear Schr¨odinger Equa- tions. Journal of Functional Analysis, 149, 245-265.
https://doi.org/10.1006/jfan.1996.3085
[8] Gui, C. (1996) Existence of Multi-Bump Solutions for Nonlinear Schro¨dinger Equations via Variational Method. Communications in Partial Differential Equations, 21, 787-820.
https://doi.org/10.1080/03605309608821208
[9] Del Pino, M., Kowalczyk, M. and Wei, J.-C. (2007) Concentration on Curves for Nonlinear Schro¨dinger Equations. Communications on Pure and Applied Mathematics, 60, 113-146.
https://doi.org/10.1002/cpa.20135
[10] Levitan, B.M. and Sargsjan, I.S. (1991) Sturm-Liouville and Dirac Operators. In: Mathematics and Its Applications (Soviet Series), Vol. 59, Kluwer Academic Publishers Group.
https://doi.org/10.1007/978-94-011-3748-5

为你推荐



Baidu
map