[1] |
(美)托马斯∙M.利拉桑德, (美)拉夫∙W.基弗, (美)乔纳森∙W.奇普曼. 遥感与图像解译[M]. 彭望琭, 余先川, 贺辉, 陈红顺, 译. 北京: 电子工业出版社, 2016. |
[2] |
Chen, Y., Lin, Z., Zhao, X., Wang, G. and Gu, Y. (2014) Deep Learning-Based Classification of Hyperspectral Data.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107. https://doi.org/10.1109/jstars.2014.2329330 |
[3] |
Tao, C., Pan, H.B., Li, YS. and Zou, Z.R. (2015) Unsupervised Spectral-Spatial Feature Learning with Stacked Sparse Autoencoder for Hyperspectral Imagery Classification.IEEE Geoscience and Remote Sensing Letters, 12, 2438-2442. https://doi.org/10.1109/lgrs.2015.2482520 |
[4] |
Mughees, A. and Tao, L. (2016). Efficient Deep Auto-Encoder Learning for the Classification of Hyperspectral Images. 2016International Conference on Virtual Reality and Visualization, Hangzhou, 24-26 September 2016, 44-51. https://doi.org/10.1109/icvrv.2016.16 |
[5] |
Zhang, X., Liang, Y., Li, C., Huyan, N., Jiao, L. and Zhou, H. (2017) Recursive Autoencoders-Based Unsupervised Feature Learning for Hyperspectral Image Classification.IEEE Geoscience and Remote Sensing Letters, 14, 1928-1932. https://doi.org/10.1109/lgrs.2017.2737823 |
[6] |
Feng, J., Liu, L., Cao, X., Jiao, L., Sun, T. and Zhang, X. (2018) Marginal Stacked Autoencoder with Adaptively-Spatial Regularization for Hyperspectral Image Classification.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 3297-3311. https://doi.org/10.1109/jstars.2018.2854893 |
[7] |
Zhou, S., Xue, Z. and Du, P. (2019) Semisupervised Stacked Autoencoder with Cotraining for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing, 57, 3813-3826. https://doi.org/10.1109/tgrs.2018.2888485 |
[8] |
石延新, 何进荣, 李照奎, 曾志高. 3D卷积自编码器高光谱图像分类模型[J]. 中国图象图形学报, 2021, 26(8): 2021-2036. |
[9] |
Ghasrodashti, E.K. and Sharma, N. (2021) Hyperspectral Image Classification Using an Extended Auto-Encoder Method.Signal Processing:Image Communication, 92, Article 116111. https://doi.org/10.1016/j.image.2020.116111 |
[10] |
Bai, Y., Sun, X., Ji, Y., Fu, W. and Zhang, J. (2023) Two-stage Multi-Dimensional Convolutional Stacked Autoencoder Network Model for Hyperspectral Images Classification.Multimedia Tools and Applications, 83, 23489-23508. https://doi.org/10.1007/s11042-023-16456-w |
[11] |
Chen, Y., Zhao, X. and Jia, X. (2015) Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392. https://doi.org/10.1109/jstars.2015.2388577 |
[12] |
Zhong, P., Gong, Z.Q. and Schönlieb, C. (2016) A Diversified Deep Belief Network for Hyperspectral Image Classification. ISPRS-International Archives of the Photogrammetry.Remote Sensing and Spatial Information Sciences, 7, 443-449. https://doi.org/10.5194/isprsarchives-xli-b7-443-2016 |
[13] |
Zhong, P., Gong, Z., Li, S. and Schonlieb, C. (2017) Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing, 55, 3516-3530. https://doi.org/10.1109/tgrs.2017.2675902 |
[14] |
Zhong, P. and Gong, Z. (2017) A Hybrid DBN and CRF Model for Spectral-Spatial Classification of Hyperspectral Images.Statistics,Optimization & Information Computing, 5, 75-98. https://doi.org/10.19139/soic.v5i2.309 |
[15] |
Ghassemi, M., Ghassemian, H. and Imani, M. (2018). Deep Belief Networks for Feature Fusion in Hyperspectral Image Classification. 2018IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, 20-21 September 2018, 1-6. https://doi.org/10.1109/icares.2018.8547136 |
[16] |
Mughees, A. and Tao, L. (2019) Multiple Deep-Belief-Network-Based Spectral-Spatial Classification of Hyperspectral Images.Tsinghua Science and Technology, 24, 183-194. https://doi.org/10.26599/tst.2018.9010043 |
[17] |
Chen, C., Ma, Y. and Ren, G. (2020) Hyperspectral Classification Using Deep Belief Networks Based on Conjugate Gradient Update and Pixel-Centric Spectral Block Features.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4060-4069. https://doi.org/10.1109/jstars.2020.3008825 |
[18] |
Li, Z., Huang, H., Zhang, Z. and Shi, G. (2022) Manifold-Based Multi-Deep Belief Network for Feature Extraction of Hyperspectral Image.Remote Sensing, 14, Article 1484. https://doi.org/10.3390/rs14061484 |
[19] |
Subba Reddy, T., Krishna Reddy, V.V., Vijaya Kumar Reddy, R., Kolli, C.S., Sitharamulu, V. and Chandrababu, M. (2023) SHBO-Based-U-Net for Image Segmentation and FSHBO-Enabled DBN for Classification Using Hyperspectral Image.The Imaging Science Journal, 72, 479-498. https://doi.org/10.1080/13682199.2023.2208927 |
[20] |
Hu, W., Huang, Y., Wei, L., Zhang, F. and Li, H. (2015) Deep Convolutional Neural Networks for Hyperspectral Image Classification.Journal of Sensors, 2015, 1-12. https://doi.org/10.1155/2015/258619 |
[21] |
Yue, J., Zhao, W., Mao, S. and Liu, H. (2015) Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks.Remote Sensing Letters, 6, 468-477. https://doi.org/10.1080/2150704x.2015.1047045 |
[22] |
Chen, Y., Jiang, H., Li, C., Jia, X. and Ghamisi, P. (2016) Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks.IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251. https://doi.org/10.1109/tgrs.2016.2584107 |
[23] |
李冠东, 张春菊, 高飞, 张雪英. 双卷积池化结构的3D-CNN高光谱遥感影像分类方法[J]. 中国图象图形学报, 2019, 24(4): 639-654. |
[24] |
Xu, Q., Xiao, Y., Wang, D.,et al. (2020) CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification.Remote Sensing, 12, Article 188. https://doi.org/10.3390/rs12010188 |
[25] |
陈亨, 邓非. 分解式三维卷积神经网络的高光谱遥感影像分类[J]. 2020, 45(8): 96-102+129. |
[26] |
魏祥坡, 余旭初, 谭熊, 刘冰, 职露. CNN和三维Gabor滤波器的高光谱图像分类[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 90-98. |
[27] |
刘金香, 班伟, 陈宇, 孙亚琴, 庄会富, 富尔江, 张克非. 融合多维度CNN的高光谱遥感图像分类算法[J]. 中国激光, 2021, 48(16): 159-169. |
[28] |
刘翠连, 陶于祥, 罗小波, 李青妍. 混合卷积神经网络的高光谱图像分类方法[J]. 激光技术, 2022, 46(3): 355-361. |
[29] |
陈辉, 张甜, 陈润斌. 基于轻量级卷积Transformer的图像分类方法及在遥感图像分类中的应用[J/OL]. 电子与信息学报: 1-9. 2022-07-07. https://link.cnki.net/urlid/11.4494.TN.20220705.1638.014, 2023-08-07. |
[30] |
高峰, 孟德森, 解正源, 亓林, 董军宇. 基于Transformer和动态3D卷积的多源遥感图像分类[J]. 北京航空航天大学学报, 2024, 50(2): 606-614. |
[31] |
金传, 童常青. 融合CNN与Transformer结构的遥感图像分类方法[J]. 激光与光电子学进展, 2023, 60(20): 225-234. |
[32] |
刘国庆, 任彦, 高晓文, 龙杰, 苏楠. 基于多尺度混合卷积的高光谱遥感图像分类方法研究[J/OL]. 激光杂志: 1-9. https://link.cnki.net/urlid/50.1085.TN.20240612.0939.004, 2024-07-06. |
[33] |
Zhu, L., Chen, Y., Ghamisi, P. and Benediktsson, J.A. (2018) Generative Adversarial Networks for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing, 56, 5046-5063. https://doi.org/10.1109/tgrs.2018.2805286 |
[34] |
Zhong, Z., Li, J., Clausi, D.A. and Wong, A. (2020) Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification.IEEE Transactions on Cybernetics, 50, 3318-3329. https://doi.org/10.1109/tcyb.2019.2915094 |
[35] |
Wang, X., Tan, K., Du, Q., Chen, Y. and Du, P. (2019) Caps-Triplegan: Gan-Assisted Capsnet for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing, 57, 7232-7245. https://doi.org/10.1109/tgrs.2019.2912468 |
[36] |
Feng, J., Feng, X., Chen, J., Cao, X., Zhang, X., Jiao, L.,et al. (2020) Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification.Remote Sensing, 12, Article 1149. https://doi.org/10.3390/rs12071149 |
[37] |
Xue, Z. (2019) A General Generative Adversarial Capsule Network for Hyperspectral Image Spectral-Spatial Classification.Remote Sensing Letters, 11, 19-28. https://doi.org/10.1080/2150704x.2019.1681598 |
[38] |
Wang, J., Guo, S., Huang, R., Li, L., Zhang, X. and Jiao, L. (2022) Dual-Channel Capsule Generation Adversarial Network for Hyperspectral Image Classification.IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. https://doi.org/10.1109/tgrs.2020.3044312 |
[39] |
Yu, W., Zhang, M., He, Z. and Shen, Y. (2022) Convolutional Two-Stream Generative Adversarial Network-Based Hyperspectral Feature Extraction.IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/tgrs.2021.3073924 |
[40] |
钱园园, 刘进锋, 朱东辉. 一种生成对抗网络半监督遥感图像分类方法[J]. 遥感信息, 2022, 37(4): 36-42. |
[41] |
Zhan, Y., Wang, Y. and Yu, X. (2023) Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks and Spectral Angle Distance.Scientific Reports, 13, Article No. 22019. https://doi.org/10.1038/s41598-023-49239-2 |