带Poisson跳的随机时变时滞微分方程全局解的存在性
The Existence of GlobalSolutions to StochasticTime-Varying DelayDifferential Equationswith Poisson Jump
DOI: 10.12677/PM.2024.148315, PDF,    国家自然科学基金支持
作者: 李光洁:广东外语外贸大学数学与统计学院,广东 广州
关键词: 随机微分方程时变时滞Poisson 跳解的存在性Stochastic Differential Equations Time-Varying Delay Poisson Jump The Existence of the Solution
摘要: 本文研究了一类高非线性的带Poisson跳的随机时变时滞微分方程。运用Lyapunov函数方法、随机分析和代数不等式技巧,研究了该类方程全局解的存在性。
Abstract: This paper investigates a class of stochastic time-varying delay differential equations (STVDEs) with Poisson jump. By employing the Lyapunov functions method, stochas- tic analysis and algebraic inequality techniques, the existence of the global solution to a STVDE with Poisson jump is obtained.
文章引用:李光洁. 带Poisson跳的随机时变时滞微分方程全局解的存在性[J]. 理论数学, 2024, 14(8): 172-179. https://doi.org/10.12677/PM.2024.148315

参考文献

[1] Mao, X. (1997) Stochastic Differential Equations and Application. Chichester.
[2] Tian, T., Burrage, K., Burrage, P.M. and Carletti, M. (2007) Stochastic Delay Differential Equations for Genetic Regulatory Network. Journal of Computational and Applied Mathematics, 205, 696-707.
https://doi.org/10.1016/j.cam.2006.02.063
[3] Mao, W., Hu, L. and Mao, X. (2019) Almost Sure Stability with General Decay Rate of Neutral Stochastic Pantograph Equations with Markovian Switching. Electronic Journal of Qualitative Theory of Differential Equations, 52, 1-17.
https://doi.org/10.14232/ejqtde.2019.1.52
[4] Shaikhet, L. (2019) About Stability of Delay Differential Equations with Square Integrable Level of Stochastic Perturbations. Applied Mathematics Letters, 90, 30-35.
https://doi.org/10.1016/j.aml.2018.10.004
[5] Mariton, M. (1990) Jump Linear Systems in Automatic Control. CRC Press.
[6] Hanson, F.B. (2007) Applied Stochastic Processes and Control for Jump-Diffusion. SIAM.
https://doi.org/10.1137/1.9780898718638
[7] Li, Q. and Gan, S. (2011) Almost Sure Exponential Stability of Numerical Solutions for Stochastic Delay Differential Equations with Jumps. Journal of Applied Mathematics and Com- puting, 37, 541-557.
https://doi.org/10.1007/s12190-010-0449-9
[8] Ahmed, H.M. and Zhu, Q. (2012) The Averaging Principle of Hilfer Fractional Stochastic Delay Differential Equations with Poisson Jumps. Applied Mathematics Letters, 112, Article 106755.
https://doi.org/10.1016/j.aml.2020.106755
[9] Li, R. and Chang, Z. (2007) Convergence of Numerical Solution to Stochastic Delay Differential Equation with Poisson Jump and Markovian Switching. Applied Mathematics and Computa- tion, 184, 451-463.
https://doi.org/10.1016/j.amc.2006.06.112
[10] Jiang, F., Shen, Y. and Liu, L. (2011) Taylor Approximation of the Solutions of Stochastic Differential Delay Equations with Poisson Jump. Communications in Nonlinear Science and Numerical Simulation, 16, 798-804.
https://doi.org/10.1016/j.cnsns.2010.04.032
[11] Kulinich, G. and Kushnirenko, S. (2014) Strong Uniqueness of Solutions of Stochastic Differential Equations with Jumps and Non-Lipschitz Random Coefficients. Modern Stochastics Theory and Applications, 1, 65-72.
https://doi.org/10.15559/vmsta-2014.1.1.6
[12] Mao, M. and He, X. (2024) Existence of a Class of Doubly Perturbed Stochastic Functional Differential Equations with Poisson Jumps. Journal of Nonlinear Mathematical Physics, 31, Article No. 24.
https://doi.org/10.1007/s44198-024-00189-x
[13] Luo, Q., Mao, X. and Shen, Y. (2011) Generalised Theory on Asymptotic Stability and Boundedness of Stochastic Functional Differential Equations. Automatica, 47, 2075-2081.
https://doi.org/10.1016/j.automatica.2011.06.014

Baidu
map