[1] |
Jeanjean, L., Jendrej, J., Le, T.T. and Visciglia, N. (2022) Orbital Stability of Ground States for a Sobolev Critical Schrodinger Equation. Journal de Mathematiques Pures et Appliquees, 164, 158-179. https://doi.org/10.1016/j.matpur.2022.06.005 |
[2] |
Lieb, E.H. and Yau, H. (1987) The Chandrasekhar Theory of Stellar Collapse as the Limit of Quantum Mechanics. Communications in Mathematical Physics, 112, 147-174. https://doi.org/10.1007/bf01217684 |
[3] |
Banquet, C. and J. Villamizar-Roa, E. (2020) On the Management Fourth-Order Schrodinger- Hartree Equation. Evolution Equations & Control Theory, 9, 865-889. https://doi.org/10.3934/eect.2020037 |
[4] |
Shi, C. (2022) Existence of Stable Standing Waves for the Nonlinear Schrodinger Equation with Mixed Power-Type and Choquard-Type Nonlinearities. AIMS Mathematics, 7, 3802-3825. https://doi.org/10.3934/math.2022211 |
[5] |
Tarek, S. (2020) Non-Linear Bi-Harmonic Choquard Equations. Communications on Pure and Applied Analysis, 11, 5033-5057. |
[6] |
Karpman, V.I. (1996) Stabilization of Soliton Instabilities by Higher-Order Dispersion: Fourth- Order Nonlinear Schrodinger-Type Equations. Physical Review E, 53, R1336-R1339. https://doi.org/10.1103/physreve.53.r1336 |
[7] |
Karpman, V.I. and Shagalov, A.G. (2000) Stability of Solitons Described by Nonlinear Schrodinger-Type Equations with Higher-Order Dispersion. Physica D: Nonlinear Phenom- ena, 144, 194-210. https://doi.org/10.1016/s0167-2789(00)00078-6 |
[8] |
Fernandez, A.J., Jeanjean, L., Mandel, R. and Maris, M. (2022) Non-Homogeneous Gagliardo- Nirenberg Inequalities in RN and Application to a Biharmonic Non-Linear Schrodinger Equation. Journal of Differential Equations, 330, 1-65. https://doi.org/10.1016/j.jde.2022.04.037 |
[9] |
Luo, T., Zheng, S. and Zhu, S. (2022) The Existence and Stability of Normalized Solutions for a Bi-Harmonic Nonlinear Schrodinger Equation with Mixed Dispersion. Acta Mathematica Scientia, 43, 539-563. https://doi.org/10.1007/s10473-023-0205-5 |
[10] |
Cho, Y., Hajaiej, H., Hwang, G. and Ozawa, T. (2013) On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity. Funkcialaj Ekvacioj, 56, 193-224. https://doi.org/10.1619/fesi.56.193 |
[11] |
Feng, B. and Zhang, H. (2018) Stability of Standing Waves for the Fractional Schrodinger- Hartree Equation. Journal of Mathematical Analysis and Applications, 460, 352-364. https://doi.org/10.1016/j.jmaa.2017.11.060 |
[12] |
Cazenave, T. and Lions, P.L. (1982) Orbital Stability of Standing Waves for Some Nonlinear Schroodinger Equations. Communicati |
[13] |
Bonheure, D., Casteras, J., dos Santos, E.M. and Nascimento, R. (2018) Orbitally Stable Standing Waves of a Mixed Dispersion Nonlinear Schrodinger Equation. SIAM Journal on Mathematical Analysis, 50, 5027-5071. https://doi.org/10.1137/17m1154138 |
[14] |
Feng, W., Stanislavova, M. and Stefanov, A. (2018) On the Spectral Stability of Ground States of Semi-Linear Schrodinger and Klein-Gordon Equations with Fractional Dispersion. Communications on Pure & Applied Analysis, 17, 1371-1385. https://doi.org/10.3934/cpaa.2018067 |
[15] |
Posukhovskyi, I. and G. Stefanov, A. (2020) On the Normalized Ground States for the Kawahara Equation and a Fourth Order NLS. Discrete & Continuous Dynamical Systems|A, 40, 4131-4162.https://doi.org/10.3934/dcds.2020175 |
[16] |
Gerard, P. (1998) Description of the Lack of Compactness for the Sobolev Imbedding. ESAIM: Control, Optimisation and Calculus of Variations, 3, 213-233. https://doi.org/10.1051/cocv:1998107 |
[17] |
Hmidi, T. and Keraani, S. (2005) Blowup Theory for the Critical Nonlinear Schrodinger Equations Revisited. International Mathematics Research Notices, 2005, 2815-2828. https://doi.org/10.1155/imrn.2005.2815 |
[18] |
Yang, H., Zhang, J. and Zhu, S. (2010) Limiting Profile of the Blow-Up Solutions for the Fourth-Order Nonlinear Schrodinger Equation. Dynamics of Partial Differential Equations, 7, 187-205. https://doi.org/10.4310/dpde.2010.v7.n2.a4 |
[19] |
Carles, R., Markowich, P.A. and Sparber, C. (2008) On the Gross-Pitaevskii Equation for Trapped Dipolar Quantum Gases. Nonlinearity, 21, 2569-2590. https://doi.org/10.1088/0951-7715/21/11/006 |
[20] |
Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. The Annals of Mathematics, 118, 349-374. https://doi.org/10.2307/2007032 |