学术期刊
切换导航
首 页
文 章
beplay手机端
投 稿
预 印
会 议
beplay电子竞技项目
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
beplay888备用网址
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 14 No. 8 (August 2024)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
玫瑰图的Hosoya指标与永久和
On the Hosoya Index and Permanental Sum of Rose Graphs
DOI:
10.12677/PM.2024.148302
,
PDF
,
,
,
被引量
下载: 2
浏览: 40
作者:
苏 坤
,
王佳亿
*
:青海民族大学数学与统计学院,青海 西宁
关键词:
玫瑰图
;
永久和
;
Hosoya指标
;
Rose Graphs
;
Permanental Sum
;
Hosoya Index
摘要:
假设图 G 是一个简单无向图,则图 G的 Hosoya 指标指的是该图的所有匹配数目之和.令I是单位矩阵,A(G) 是图 G 的邻接矩阵,则积和多项式定义为 π(G,x)= per(xI-A(G)).图 G 的永久和定义为其积和多项式系数的绝对值之和.本文研究了三圈图中玫瑰图的 Hosoya 的第二小并刻画了极图:其次,研究了玫瑰图永久和的第二小并刻画了极图。
Abstract:
Let G be a simple and undirected graph. The Hosoya index Z(G) of G is defined to be the total number of matchings of G. Let I be an identity matrix and A(G) be an adjacency matrix of G. Then the permanental polynomial of G is defined as π(G,x) = per(xI-A(G)). The permanental sum of G is defined as the sum of the absolute values of all coefficients of π(G,x). In this paper, we prove the second smallest Hosoya index of rose graphs and determine the extremal graphs. Besides, we prove the second smallest permanental sum of rose graphs and determine the extremal graphs.
文章引用:
苏坤, 王佳亿. 玫瑰图的Hosoya指标与永久和[J]. 理论数学, 2024, 14(8): 46-53.
https://doi.org/10.12677/PM.2024.148302
参考文献
[1]
Wu, T. and Lai, H. (2018) On the Permanental Sum of Graphs. Applied Mathematics and Computation, 331, 334-340.
https://doi.org/10.1016/j.amc.2018.03.026
[2]
Hosoya, H. (1971) Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bulletin of the Chemical Society of Japan, 44, 2332-2339.
https://doi.org/10.1246/bcsj.44.2332
[3]
So, W., Wu, T. and Lu, H. (2021) Sharp Bounds on the Permanental Sum of a Graph. Graphs and Combinatorics, 37, 2423-2437.
https://doi.org/10.1007/s00373-021-02365-y
[4]
Liu, H., Yan, X. and Yan, Z. (2007) On the Merrifield-Simmons indices and Hosoya Indices of Trees with a Prescribed Diameter. MATCH Communications in Mathematical and in Com- puter Chemistry, 57, 371-384.
[5]
Deng, H. (2007) The Smallest Hosoya Index in (n, n + 1)-Graphs. Journal of Mathematical Chemistry, 43, 119-133.
https://doi.org/10.1007/s10910-006-9186-6
[6]
Liu, H. and Lu, M. (2007) A Unified Approach to Extremal Cacti for Different Indices. MATCH Communications in Mathematical and in Computer Chemistry, 58, 183-194.4
[7]
Ghorbani, M., Dehmer, M., Mowshowitz, A., Tao, J. and Emmert-Streib, F. (2019) The Hosoya Entropy of Graphs Revisited. Symmetry, 11, Article 1013.
https://doi.org/10.3390/sym11081013
[8]
Zade, S.G., Dolatimalekabad, A. and Safari, M. (2011) The Smallest Hosoya Index of Connected Tricyclic Graphs. MATCH Communications in Mathematical and in Computer Chemistry, 65, 57-70.
投稿
为你推荐
友情链接
科研出版社
开放图书馆
map