玫瑰图的Hosoya指标与永久和
On the Hosoya Index and Permanental Sum of Rose Graphs
DOI:10.12677/PM.2024.148302,PDF,下载: 2浏览: 40
作者:苏 坤,王佳亿*:青海民族大学数学与统计学院,青海 西宁
关键词:玫瑰图永久和Hosoya指标Rose GraphsPermanental SumHosoya Index
摘要:假设图 G 是一个简单无向图,则图 G的 Hosoya 指标指的是该图的所有匹配数目之和.令I是单位矩阵,A(G) 是图 G 的邻接矩阵,则积和多项式定义为 π(G,x)= per(xI-A(G)).图 G 的永久和定义为其积和多项式系数的绝对值之和.本文研究了三圈图中玫瑰图的 Hosoya 的第二小并刻画了极图:其次,研究了玫瑰图永久和的第二小并刻画了极图。
Abstract:Let G be a simple and undirected graph. The Hosoya index Z(G) of G is defined to be the total number of matchings of G. Let I be an identity matrix and A(G) be an adjacency matrix of G. Then the permanental polynomial of G is defined as π(G,x) = per(xI-A(G)). The permanental sum of G is defined as the sum of the absolute values of all coefficients of π(G,x). In this paper, we prove the second smallest Hosoya index of rose graphs and determine the extremal graphs. Besides, we prove the second smallest permanental sum of rose graphs and determine the extremal graphs.
文章引用:苏坤, 王佳亿. 玫瑰图的Hosoya指标与永久和[J]. 理论数学, 2024, 14(8): 46-53. https://doi.org/10.12677/PM.2024.148302

参考文献

[1] Wu, T. and Lai, H. (2018) On the Permanental Sum of Graphs. Applied Mathematics and Computation, 331, 334-340.
https://doi.org/10.1016/j.amc.2018.03.026
[2] Hosoya, H. (1971) Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bulletin of the Chemical Society of Japan, 44, 2332-2339.
https://doi.org/10.1246/bcsj.44.2332
[3] So, W., Wu, T. and Lu, H. (2021) Sharp Bounds on the Permanental Sum of a Graph. Graphs and Combinatorics, 37, 2423-2437.
https://doi.org/10.1007/s00373-021-02365-y
[4] Liu, H., Yan, X. and Yan, Z. (2007) On the Merrifield-Simmons indices and Hosoya Indices of Trees with a Prescribed Diameter. MATCH Communications in Mathematical and in Com- puter Chemistry, 57, 371-384.
[5] Deng, H. (2007) The Smallest Hosoya Index in (n, n + 1)-Graphs. Journal of Mathematical Chemistry, 43, 119-133.
https://doi.org/10.1007/s10910-006-9186-6
[6] Liu, H. and Lu, M. (2007) A Unified Approach to Extremal Cacti for Different Indices. MATCH Communications in Mathematical and in Computer Chemistry, 58, 183-194.4
[7] Ghorbani, M., Dehmer, M., Mowshowitz, A., Tao, J. and Emmert-Streib, F. (2019) The Hosoya Entropy of Graphs Revisited. Symmetry, 11, Article 1013.
https://doi.org/10.3390/sym11081013
[8] Zade, S.G., Dolatimalekabad, A. and Safari, M. (2011) The Smallest Hosoya Index of Connected Tricyclic Graphs. MATCH Communications in Mathematical and in Computer Chemistry, 65, 57-70.

为你推荐



Baidu
map