[1] |
Chemin, J.Y., Desjardins, B., Gallagher, I. and Grenier, E. (2006) Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford University Press, 32. |
[2] |
Metzler, R. and Klafter, J. (2000) The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339, 1-77. https://doi.org/10.1016/s0370-1573(00)00070-3 |
[3] |
Leray, J. (1934) Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Mathemat- ica, 63, 193-248. https://doi.org/10.1007/bf02547354 |
[4] |
Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem. I. Archive for Rational Mechanics and Analysis, 16, 269-315. https://doi.org/10.1007/bf00276188 |
[5] |
Kato, T. (1984) Strong Lp-Solutions of the Navier-Stokes Equation in Rm, with Applications to Weak Solutions. Mathematische Zeitschrift, 187, 471-480. https://doi.org/10.1007/bf01174182 |
[6] |
Cannone, M. (1997) A Generalization of a Theorem by Kato on Navier-Stokes Equations. Revista Matematica Iberoamericana, 13, 515-541. https://doi.org/10.4171/rmi/229 |
[7] |
Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in Mathematics, 157, 22-35. https://doi.org/10.1006/aima.2000.1937 |
[8] |
Mercado, J.R., Guido, E.P., SSnchez-Sesma, A.J.,I~niguez, M. and Gonzalez, A. (2012) Analysis of the Blasius' Formula and the Navier-Stokes Fractional Equation. In: Klapp, J., Medina, A., Cros, A. and Vargas, C., Eds., Fluid Dynamics in Physics, Engineering and Environmental Applications, Springer Berlin Heidelberg, 475-480. https://doi.org/10.1007/978-3-642-27723-8 44 |
[9] |
Lions, J.L. (1969) Quelques methodes de resolution des problemes aux limites non lineaires. Dunod. |
[10] |
Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. https://doi.org/10.1016/j.jde.2003.07.007 |
[11] |
Wu, J. (2005) Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces. Communications in Mathematical Physics, 263, 803-831. https://doi.org/10.1007/s00220-005-1483-6 |
[12] |
Yu, X. and Zhai, Z. (2012) Well-Posedness for Fractional Navier-Stokes Equations in the Largest Critical Spaces B∞,∞-(2β-1)(Rn). Mathematical Methods in the Applied Sciences, 35, 676- 683. https://doi.org/10.1002/mma.1582 |
[13] |
Babin, A., Mahalov, A. and Nicolaenko, B. (1997) Regularity and Integrability of 3D Euler and Navier-Stokes Equations for Rotating Fluids. Asymptotic Analysis, 15, 103-150. https://doi.org/10.3233/asy-1997-15201 |
[14] |
Nicolaenko, B., Babin, A. and Mahalov, A. (1999) Global Regularity of 3D Rotating Navier- Stokes Equations for Resonant Domains. Indiana University Mathematics Journal, 48, 1133- 1176. https://doi.org/10.1512/iumj.1999.48.1856 |
[15] |
Chemin, J.-Y., Desjardins, B., Gallagher, I. and Grenier, E. (2002) Anisotropy and Dispersion in Rotating Fluids. In: Studies in Mathematics and Its Applications, Vol. 31, Elsevier, 171-192. https://doi.org/10.1016/s0168-2024(02)80010-8 |
[16] |
Iwabuchi, T. and Takada, R. (2013) Global Solutions for the Navier-Stokes Equations in the Rotational Framework. Mathematische Annalen, 357, 727-741. https://doi.org/10.1007/s00208-013-0923-4 |
[17] |
Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations in the Rotational Framework. Advances in Differential Equations, 19, 857-878. https://doi.org/10.57262/ade/1404230126 |
[18] |
Sun, J., Yang, M. and Cui, S. (2016) Existence and Analyticity of Mild Solutions for the 3D Rotating Navier-Stokes Equations. Annali di Matematica Pura ed Applicata, 196, 1203-1229. https://doi.org/10.1007/s10231-016-0613-4 |
[19] |
Sun, X. and Ding, Y. (2019) Dispersive Effect of the Coriolis Force and the Local Well- Posedness for the Fractional Navier-Stokes-Coriolis System. Journal of Evolution Equations, 20, 335-354. https://doi.org/10.1007/s00028-019-00531-7 |
[20] |
Ahn, J., Kim, J. and Lee, J. (2021) Coriolis Effect on Temporal Decay Rates of Global Solutions to the Fractional Navier-Stokes Equations. Mathematische Annalen, 383, 259-289. https://doi.org/10.1007/s00208-020-02122-1 |
[21] |
Kishimoto, N. and Yoneda, T. (2017) Global Solvability of the Rotating Navier-Stokes Equations with Fractional Laplacian in a Periodic Domain. Mathematische Annalen, 372, 743-779. https://doi.org/10.1007/s00208-017-1605-4 |
[22] |
Bahouri, H., Chemin, J.Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. In: Grundlehren der mathematischen Wissenschaften, Vol. 343, Springer- Verlag. |
[23] |
Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et Appliquees, 100, 166-203. https://doi.org/10.1016/j.matpur.2012.10.015 |
[24] |
Hieber, M. and Shibata, Y. (2009) The Fujita-Kato Approach to the Navier-Stokes Equations in the Rotational Framework. Mathematische Zeitschrift, 265, 481-491. https://doi.org/10.1007/s00209-009-0525-8 |
[25] |
Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical Besov Spaces. Nonlinear Analysis: Theory, Methods Applications, 72, 3173-3189. https://doi.org/10.1016/j.na.2009.12.011 |
[26] |
Tomas, P.A. (1975) A Restriction Theorem for the Fourier Transform. Bulletin of the American Mathematical Society, 81, 477-478. https://doi.org/10.1090/s0002-9904-1975-13790-6 |
[27] |
Strichartz, R.S. (1977) Restrictions of Fourier Transforms to Quadratic Surfaces and Decay of Solutions of Wave Equations. Duke Mathematical Journal, 44, 705-714. https://doi.org/10.1215/s0012-7094-77-04430-1 |