天然多糖的来源、化学结构及免疫增强活性研究
Resource, Chemical Structure and Immunomodulatory Activity of Natural Polysaccharides
DOI:10.12677/hjmce.2024.123026,PDF,HTML,XML,下载: 2浏览: 43科研立项经费支持
作者:张 虎,李 飞*:中国药科大学多靶标天然药物全国重点实验室,江苏 南京;刘鄂湖*:中国药科大学多靶标天然药物全国重点实验室,江苏 南京;南京中医药大学药学院,江苏 南京
关键词:天然多糖免疫增强作用机制Natural PolysaccharidesImmune EnhancementMechanism of Action
摘要:多糖作为生物体内普遍存在的生物大分子,其重要性不仅体现在作为生物体结构的基础成分上,更显著地展现在其具有抗病毒、抗菌、抗肿瘤和调节血糖等多样的生物活性上。众多研究成果表明天然多糖因其独特的生物活性,正逐步在药物研发领域展现其广泛的应用前景。本文对具有免疫增强潜力的天然多糖的生物资源来源、化学组成和结构特征进行综述,并对天然多糖在调节肠道菌群方面的理论基础研究进行总结的基础上探讨其免疫增强的作用机制,继而展望了这一领域的发展前景和方向。经过本文的深入探讨,我们旨在为天然多糖的免疫活性研究提供坚实的理论支撑,并期望能够激发研究者们对多糖免疫调节机制更深层次研究的全新思考。本文不仅对多糖在增强机体免疫力方面的潜在作用进行梳理,还揭示了其作为天然产物的独特优势,为未来的研究提供了新的方向。
Abstract:Polysaccharides, as ubiquitous biological macromolecules, play a crucial role not only as fundamental components of organism structures but also in various physiological activities such as antiviral, antibacterial, anti-tumor effects and blood glucose regulation. Extensive research has demonstrated that natural polysaccharides possess unique biological activities, gradually revealing their broad application prospects in drug research and development. In this review, we comprehensively summarize the biological resources, chemical composition, and structural characteristics of natural polysaccharides with immune-enhancing potential. Furthermore, we delve into the mechanisms underlying immune enhancement and focus on the theoretical basis of natural polysaccharides in regulating intestinal flora. Additionally, we prospectively discuss future directions for development in this field. The aim of this paper is to provide a solid theoretical foundation for studying the immune activity of natural polysaccharides while stimulating novel insights into the deeper understanding of their immune regulation mechanisms. This review not only summarizes the potential role of polysaccharides in enhancing immunity but also highlights their unique advantages as natural products—providing new avenues for future research.
文章引用:张虎, 李飞, 刘鄂湖. 天然多糖的来源、化学结构及免疫增强活性研究[J]. 药物化学, 2024, 12(3): 227-238. https://doi.org/10.12677/hjmce.2024.123026

1. 前言

免疫力水平对于维持人体健康至关重要,然而,多种因素如营养不良、化疗应用及应激源[1]等,可能影响免疫力,导致免疫紊乱,进而增加感染、肿瘤[1]及免疫缺陷等疾病的风险[2]。因此,维持良好的免疫力水平在免疫相关疾病的治疗中显得尤为关键。寻找安全、有效且具有广谱免疫调节潜力的药物,已成为临床医学研究的迫切任务。

多糖作为自然界中广泛存在的天然活性成分,具有独特的生物活性。近年来,大量研究表明,多糖在增强免疫力方面表现出显著效果。因其高安全性及低副作用,植物多糖在生物化学、医学及食品工业中受到了广泛研究。本文综述对具有免疫增强潜力的天然多糖的生物来源、化学结构及其免疫促进机制进行综述,并着重探讨其构效关系。文献调研显示,约55种不同来源的多糖具有免疫增强作用。这些多糖通过保护免疫器官、促进免疫细胞增殖、释放炎症因子、维持肠道屏障及改善肠道菌群稳态等机制,增强了机体的免疫力。

2. 增强免疫多糖的生物来源

在深入探索免疫调节机制与多糖功能的领域,我们从Web of Science、PubMed resources和中国知网三个权威数据库中检索了近五年的相关文献,共计收集到超过320篇正式出版的学术作品。这些研究主要聚焦于多糖的提取技术、高效的分离纯化流程、精确的结构鉴定方法,以及对其生物学活性的全面评价方面。在此,我们主要对免疫增强多糖的多样生物来源进行系统的整理与讨论。如图1所示,我们各类生物来源多糖的占比情况进行分析,并特别指出了部分高频出现的植物种类。免疫增强多糖的生物来源涵盖了多个领域,主要包括显花植物、大型真菌、海藻以及水生动物。其中,显花植物以其丰富的种类和多样的多糖结构,成为了最主要的来源。这些显花植物按照多糖提取部位的不同,可细分为六个亚类:根部及根茎、果实、叶片、茎干、全草及其他部位。在这些亚类中,根部、果实和叶片因其多糖含量高且免疫活性显著,获得了广大研究者们的关注。相比之下,茎干和全草等其他部位虽然也含有一定量的多糖,但其在免疫调节方面的作用尚需进一步探究。具体而言,人参[3][4]、黄芪[5]和甘草[6]等多糖来源于根;枸杞[7][8]等多糖来源于果实;山腊梅[9]等多糖则来源于叶。此外,茎部提取的石斛多糖[10][11]和全草提取的鸡骨草多糖[12][13]也是报道较多的多糖来源。大型真菌是增强免疫多糖提取的第二大生物来源,子实体和菌丝体是其主要的多糖提取部位,比如茯苓[14][15]、竹荪[16]、猴头菇[17]等。

Figure 1.(a) The classification and statistics of species as resources of the immune-enhancing polysaccharide in the flow and pie charts of exhibition, and (b) Photographs of some representative materials derived from biological resource used in polysaccharide preparation

1.(a) 免疫增强多糖生物来源分类占比图以及(b) 代表性生物来源图

此外在免疫增强领域,源自多种藻类的多糖展现出显著的重要性,如来源于小球藻的小球藻多糖[18]、来源于草叶马尾藻的褐藻多糖[19]以及来自舌状蜈蚣藻的蜈蚣藻多糖[20]。然而,关于动物来源的多糖与免疫增强效应之间关联的报道相对稀少,这背后可能有多重原因。一方面,相较于植物、微生物和海洋生物,动物多糖的资源可及性较低,获取难度较高,这在一定程度上限制了相关研究的开展。另一方面,动物组织中多糖的含量及分布特点可能也是造成这一状况的原因之一。它们可能更多地集中在某些特定部位,而非广泛分布于生物体内,这使得从动物中分离纯化多糖变得更具挑战性。少有多糖与动物物种有关,如鲍鱼[21]和枸杞蜂花多糖[22]

3. 增强免疫多糖的化学结构研究

天然多糖的功能性主要源于其独特的分子特性,这一点已被广泛认知。然而,多糖结构分析在糖化学领域中却是一个难题。如图2所示,多糖的结构研究颇具挑战性,首要问题在于纯多糖的获取难度。在进行多糖的提取时,不同的技术方法会对产物的组成和结构造成显著影响。这些影响可能涉及多糖的分子量、糖苷键类型、糖单元排列方式等多个方面。同时,多糖提取效率普遍偏低也是制约多糖化学结构研究的重要因素。这不仅与多糖在生物体内的含量较低有关,还与多糖和与其他生物分子的紧密结合、溶解性差以及稳定性不足等因素有关。为了提高多糖的提取效率,需要不断探索新的提取技术和方法,并对其进行优化和改进。在多糖的结构分析方面,其复杂性远超过蛋白质或核酸等大分子。这主要是由于多糖的单糖组成、糖苷键类型、糖单元排列方式、聚合度和分支点的多样性所致。为了准确解析多糖的结构信息,需要综合运用多种分析手段,如PMP柱前衍生化法、甲基化及刚果红实验等化学方法,同时还要结合红外光谱、核磁共振波谱法等光谱分析方法,从多个角度揭示其结构特征。这一过程极为复杂,但对于深入了解多糖的生物活性和功能至关重要,目前多糖结构信息的获取主要依赖于化学与仪器分析的结合,但多糖化学结构解析的技术仍需进一步完善与提升。

Figure 2.Schematic process diagram on preparation and structural elucidation of natural active polysaccharide products

2.天然活性多糖产品的制备及结构获得流程图

在深入研究增强免疫多糖的化学结构时,我们发现这些多糖可以根据其结构是否已明确划分为两大类。一类是多糖物质中的粗多糖或尚未精确解析其结构的精制多糖,它们的精确化学构造尚未明晰。另一类则是那些已经通过科学方法详细解析,并确定了精确结构式的多糖,如图3所展示的四种精制多糖范例:来自桑黄的多糖ZDPS[23]、来自小球藻的多糖CZIP-S3[18]、来自山楂的水溶性多糖CPP[24]以及来自石斛的多糖DOW-5B[11]。对于粗多糖和结构未明确的精制多糖,尽管它们的具体化学结构尚未被完全揭示,但这并不妨碍我们对它们免疫调节潜力的初步评估。而对于那些结构已明确的多糖,我们可以通过分析它们的单糖组成、糖苷键类型、链长以及侧链结构等特征,来更深入地理解它们如何与免疫系统相互作用,进而优化其作为免疫调节剂的潜力。这一分类不仅有助于我们系统地研究和评价增强免疫多糖,还为开发新型免疫调节剂提供了重要的理论基础。根据已有的文献报道,不难看出多糖的增强免疫活性与多种因素密切相关。首先,多糖的化学结构类型是决定其活性基础。不同类型的多糖,如葡聚糖、甘露聚糖等,因其独特的单糖组成和连接方式,展现出不同的免疫刺激效果。其次,分子量是影响多糖免疫活性的重要因素。适度的分子量有助于多糖在生物体内发挥作用,过大或过小的分子量都可能影响其免疫刺激效果。此外,多糖的构象也对其免疫活性具有显著影响。例如,β-(1→3)-d-葡聚糖的三螺旋构象是其免疫刺激活性的关键特征之一。这种特殊的空间结构有助于多糖与免疫细胞或受体相互作用,从而触发免疫响应[25]。官能团的存在也是多糖免疫活性的重要因素。甘露聚糖、半乳聚糖和岩藻聚糖中的乙酰基和硫酸盐基,能够增强多糖与免疫细胞的结合能力,进而提升免疫刺激效果[26]。同时,多糖的分支度也对其免疫活性产生影响。果胶多糖的分支度能够影响其在水溶液中的构象和稳定性,从而影响其免疫刺激活性。值得注意的是,这些结构特征并不是孤立的,它们的组合和相互作用也对多糖的免疫刺激活性产生重要影响。例如,II型阿拉伯半乳聚糖的存在与其免疫刺激活性密切相关,这可能是由于其独特的单糖组成、分子量和构象等多种因素共同作用的结果。综上所述,多糖的免疫促进活性是由其化学结构、分子量[27]、构象、官能团和分支等多种结构特征共同决定的[28]。未来的研究应进一步深入探讨这些结构特征之间的相互作用和协同作用机制,以便更好地利用这些具有免疫刺激活性的多糖进行药物开发和治疗应用。

Figure 3.The well elucidated chemical structures of immune-enhancing polysaccharides from four species

3.已知化学结构的四种天然增强免疫多糖的结构

4. 天然多糖增强免疫作用及其机制

天然多糖,无论是粗多糖还是精制多糖,其增强免疫活性的功效,通常经由一系列严谨的试验得以验证。这些试验涵盖了动物实验,如小鼠[29]、大鼠或斑马鱼模型[30][31]的应用,以及体外细胞培养,如RAW264.7细胞增殖实验[32]。通过这些方法,我们能够观察到多糖对免疫器官及免疫细胞的生长具有显著的促进作用,同时能够激活免疫细胞,并促进免疫因子的释放。在免疫力低下的发展过程中,体重下降、免疫屏障受损以及肠道菌群变化等病理过程常常相伴发生,对机体健康造成严重影响。幸运的是,天然多糖在细胞水平和分子水平对上述病理过程展现出不同程度的抑制作用。这些作用不仅体现在对免疫细胞的直接刺激和调节上,更深入到对免疫相关基因和信号通路的调控。天然多糖的作用机制是一个复杂而精细的网络。它通过多种途径调节免疫系统,调节免疫因子的释放,同时促进免疫器官的生长和发育。这些综合效应使得天然多糖在改善免疫功能、抵御疾病方面展现出巨大的潜力。

4.1. 保护免疫器官

免疫器官在人体的免疫系统中占据着举足轻重的地位,它们主要划分为中枢免疫器官和外周免疫器官两大类。中枢免疫器官,诸如胸腺和骨髓,是免疫细胞生成、分化和成熟的核心区域,为免疫应答提供了基础细胞。相对而言,外周免疫器官,如淋巴结和脾脏,则是成熟免疫细胞如T细胞和B细胞的居住和活跃场所,它们在这些器官中执行着重要的免疫监测和应答功能。免疫器官脏器指数这一指标能够通过量化免疫器官的大小、重量或细胞数量,准确反映免疫器官的功能状态和免疫应答的活跃度。Zhao等[33]人的研究表明,从木耳中提取的多糖对环磷酰胺免疫抑制小鼠具有显著的免疫增强作用。这种多糖不仅能提升免疫器官指数,还能明显增高血清中的免疫球蛋白A(IgA)、IgG、IgM以及肠黏膜分泌的IgA(SIgA)水平。此外,它还能有效刺激血清中肿瘤坏死因子-α(TNF-α)、白细胞介素-2 (IL-2)、白细胞介素-4 (IL-4)以及白细胞介素-10 (IL-10)的释放,进而强化机体的免疫应答。而翟旭楠等人的研究则发现,刺五加多糖[34]可以显著提高免疫抑制小鼠的胸腺指数,同时也有报道称生地黄多糖能够上调免疫抑制小鼠的脾脏指数,并促进脾淋巴细胞的增殖[35]

4.2. 调节免疫细胞

作为一种具有显著生物活性的物质,多糖在免疫增强过程中展现出了不可或缺的作用。首先,它通过直接作用机制激活淋巴细胞,有效调节机体的免疫应答。其次,多糖还能显著刺激淋巴细胞分泌各类关键性细胞因子,这些细胞因子在免疫调节网络中发挥着至关重要的作用。党参多糖[36]通过调整小鼠T细胞亚群的比例,特别是CD8+的水平,进而提升T淋巴细胞CD4+/CD8+的比值,有助于维持T淋巴细胞的平衡状态,并抵御外界因素如氢化可的松的干扰。巨噬细胞可释放大量的NO、TNF-α和IL-6。NO可抑制或杀伤病原体,促进NK细胞活性、激活外周血单核细胞等[37]。多糖能够显著提高巨噬细胞的吞噬功能,促进其增殖,并刺激其分泌与免疫应答紧密相关的细胞因子,进而进一步强化机体的免疫防御机制[38]Nigella sativaL.种子多糖[39]和蜘蛛果多糖[40]能够显著增强RAW264.7细胞的增殖能力,促进NO的释放,并提升TNF-α和IL-6的水平,显示出其在巨噬细胞激活和免疫调节方面的潜力。Wang等发现杏鲍菇多糖[41]能够显著增加脾淋巴细胞的增殖活性、NK细胞的活性以及腹腔吞噬细胞的吞噬功能。值得特别关注的是,树突状细胞(DCs)在免疫系统中扮演着核心角色,多糖能够通过上调细胞因子的表达、促进抗原肽的呈递以及诱导T细胞的分化等多种途径来增强免疫系统的整体功能[42]。肉苁蓉多糖[43]和甘草多糖[6]均被发现能够促进DCs的成熟,进而促进相关细胞因子的分泌,从而增强免疫应答(图4)。

Figure 4.The mechanism by which natural polysaccharides enhance immune function through cellular regulation

4.天然多糖通过细胞调节实现增强免疫作用的机制

4.3. 调节肠道菌群

肠道微生物及其代谢产物在维持机体免疫稳态方面起着举足轻重的作用[44]。作为一种能量来源,多糖经过肠道菌群的代谢后,能够显著影响肠道菌群的构成、多样性和代谢产物,进而对机体发挥调控效应[45]。乳酸杆菌、嗜酸乳杆菌和双歧杆菌等益生菌已被证实具有调节机体免疫功能的能力[46]-[48]。乳酸杆菌不仅能增强免疫力,产生抗菌物质,有效阻止病原微生物的黏附和移位,还参与维生素的合成过程,降低胆固醇水平,并抑制病原体的活性。嗜酸乳杆菌则具有刺激细胞分泌抗炎因子如TNF-α和IL-10的功能,有助于平衡免疫反应。双歧杆菌则能诱导免疫细胞分泌IgG和IgA,进一步增强机体的免疫防御能力。冬虫夏草多糖[49]能够改善微生物群落的多样性,调节肠道微生物群的整体结构,抑制致病肠杆菌属的生长,并促进有益细菌的增殖。枸杞多糖[50]也展现出增加肠内益生菌如长双歧杆菌和乳酸杆菌丰度的效果,这提示其免疫调节作用可能与丰度显著增加的肠道有益菌密切相关。在肠道微生物的发酵过程中,多糖生成的短链脂肪酸(SCFAs)对肠道健康具有关键作用。这些SCFAs不仅是肠上皮细胞的能量来源,还有助于维护结肠的健康和功能。通过改善底物代谢、抑制肠道致病菌的生长、参与维持肠道功能和结肠上皮细胞形态,SCFAs能够促进胃肠道黏膜屏障的完整性[51]-[53]。西洋参多糖[54]和黄芩多糖[55]可以上调肠道紧密连接蛋白(TJs)的表达,包括occludin和claudin-5,从而修复受损的肠道屏障(图5)。

Figure 5.The mechanism of immune-enhancing polysaccharides via regulating intestines and intestinal flora

5.天然多糖通过调节肠道及肠道微生物实现增强免疫作用的机制

4.4. 多糖发挥免疫调节作用相关受体

近年来对多糖在免疫调节方面的研究表明,其能够与细胞表面的特定受体,如TLRs (Toll样受体)和补体受体3 (CR3)等结合,有效触发下游信号通路的激活[56]。这一机制不仅促使多种免疫相关细胞因子的释放,还可加强免疫相关蛋白的表达,从而实现对免疫系统的调节作用[57]。其中备受关注的是TLRs这一跨膜蛋白家族,它具备识别广泛存在于微生物中的配体并对潜在危险信号做出反应的能力。当TLRs被激活时,它能够进一步触发下游的相关通路,进而产生免疫效应[58]。已有研究证明,冬虫夏草多糖[59]能够显著增强RAW264.7细胞和C57BL/6小鼠肠系膜淋巴结免疫细胞的功能,表现为NO、TNF-α和IL-6等细胞因子的分泌增加,并通过增加ERK1/2、JNK和p38等MAPK蛋白的磷酸化,进一步激活p38 MAPK信号通路。此外,牛蒡多糖[60]也通过免疫受体TLR4及其下游的NF-κB信号通路对促炎因子和炎性因子进行免疫调节。而茶花多糖[61]则对结肠中的TLR4/MyD88/NF-κB p65和JAK2/STAT3信号通路产生激活作用,从而改善肠道屏障的功能。值得注意的是,CR3作为一种白细胞黏附受体,在巨噬细胞等免疫细胞表面发挥着关键作用,不仅参与细胞间的黏附过程,还参与信号传导[62]。研究还发现,龙眼多糖[63]能够显著增强RAW264.7细胞对脂多糖的吞噬功能,并促进NO、IL-1β、IL-6和TNF-α等因子的产生。进一步的研究还发现,当在巨噬细胞培养液中加入CR3和Ca2+的抗体后,这些细胞中IL-1β、IL-6和TNF-α的表达显著下降,而MAPKs和PI3K/Akt通路的基因表达则有所增加,这表明龙眼多糖的免疫调节作用与这些信号通路的激活密切相关。另外,Talapphet等的研究也表明,蒲公英多糖[64]能够显著提升RAW264.7细胞中iNOS、IL6、IL1β、IL10和TNF-α的mRNA表达水平,并显著提高了MAPK的磷酸化水平。RAW264.7细胞的激活涉及细胞表面的TLR2、TLR4和CR3受体,并通过MAPK和NF-κB信号通路发挥免疫调节作用。其他受体,如Dectin-1受体[65]、MR受体[66]和SR受体[67]等也都被报道参与了多糖增强机体免疫的过程中。

5. 总结与展望

在免疫系统调节方面,天然多糖展现出显著的免疫增强或免疫刺激效果。特别是在植物多糖中,其对于细胞因子的分泌、巨噬细胞及T/B淋巴细胞的激活、抗体生成以及调节肠道菌群等方面,均展现出不容忽视的潜力。近年来,随着现代药理、药化分析技术的迅猛发展,国内外学者对植物多糖的研究进行了深入拓展,其中涵盖了提取技术的优化、高效分离纯化方法的探索、结构特征的精确解析,以及多糖在生理功能作用机制方面的详细研究。这些跨学科的探索工作综合了化学、药理学和生物学的知识,旨在进一步夯实多糖免疫活性作用机理的理论基石。天然多糖以其独特的免疫调节功能,在机体内展现出显著的治疗效果。相较于其他治疗手段,天然多糖具备疗效确切、毒性及不良反应较低等多重优势,这使得它在未来的健康领域中展现出巨大的潜力。随着研究的深入和技术的进步,天然多糖有望作为一种高效的保健品和药物,在全球范围内得到广泛应用,为人类的健康事业贡献重要力量,造福全人类。

基金项目

科技部“重大新药创制”重大科技专项课题(No. 2011ZX09307-002)。

NOTES

*通讯作者。

参考文献

[1] Huang, F., Zhang, R., Liu, Y., Xiao, J., Liu, L., Wei, Z.,et al.(2016) Dietary Litchi Pulp Polysaccharides Could Enhance Immunomodulatory and Antioxidant Effects in Mice.International Journal of Biological Macromolecules, 92, 1067-1073.
https://doi.org/10.1016/j.ijbiomac.2016.08.021
[2] Raje, N. and Dinakar, C. (2015) Overview of Immunodeficiency Disorders.Immunology and Allergy Clinics of North America, 35, 599-623.
https://doi.org/10.1016/j.iac.2015.07.001
[3] Feng, L., Han, N., Han, Y., Shang, M., Liang, T., Liu, Z.,et al.(2024) Structural Analysis of a Soluble Polysaccharide GSPA-0.3 from the Root ofPanax ginsengC. A. Meyer and Its Adjuvant Activity with Mechanism Investigation.Carbohydrate Polymers, 326, Article ID: 121591.
https://doi.org/10.1016/j.carbpol.2023.121591
[4] Zhang, X., Liu, Z., Zhong, C., Pu, Y., Yang, Z. and Bao, Y. (2021) Structure Characteristics and Immunomodulatory Activities of a Polysaccharide RGRP-1b from Radix Ginseng Rubra.International Journal of Biological Macromolecules, 189, 980-992.
https://doi.org/10.1016/j.ijbiomac.2021.08.176
[5] Li, Y., Zheng, J., Wang, Y., Yang, H., Cao, L., Gan, S.,et al.(2023) Immuno-Stimulatory Activity of Astragalus Polysaccharides in Cyclophosphamide-Induced Immunosuppressed Mice by Regulating Gut Microbiota.International Journal of Biological Macromolecules, 242, Article ID: 124789.
https://doi.org/10.1016/j.ijbiomac.2023.124789
[6] Aipire, A., Mahabati, M., Cai, S., Wei, X., Yuan, P., Aimaier, A.,et al.(2020) The Immunostimulatory Activity of Polysaccharides fromGlycyrrhizauralensis.PeerJ, 8, e8294.
https://doi.org/10.7717/peerj.8294
[7] Wang, Y., Sun, M., Jin, H., Yang, J., Kang, S., Liu, Y.,et al.(2021) Effects ofLyciumbarbarumPolysaccharides on Immunity and the Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice.Frontiers in Microbiology, 12, Article 701566.
https://doi.org/10.3389/fmicb.2021.701566
[8] Ding, Y., Yan, Y., Chen, D., Ran, L., Mi, J., Lu, L.,et al.(2019) Modulating Effects of Polysaccharides from the Fruits ofLyciumbarbarumon the Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice.Food & Function, 10, 3671-3683.
https://doi.org/10.1039/c9fo00638a
[9] Zhang, Y., Tang, Y., Cai, L., He, J., Chen, L., Ouyang, K.,et al.(2023) Chimonanthus Nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice.Oxidative Medicine and Cellular Longevity, 2023, Article ID: 6208680.
https://doi.org/10.1155/2023/6208680
[10] Liu, W., Yan, R. and Zhang, L. (2019) Dendrobium Sonia Polysaccharide Regulates Immunity and Restores the Dysbiosis of the Gut Microbiota of the Cyclophosphamide-Induced Immunosuppressed Mice.Chinese Journal of Natural Medicines, 17, 600-607.
https://doi.org/10.1016/s1875-5364(19)30062-7
[11] Li, M., Yue, H., Wang, Y., Guo, C., Du, Z., Jin, C.,et al.(2020) Intestinal Microbes Derived Butyrate Is Related to the Immunomodulatory Activities of Dendrobium Officinale Polysaccharide.International Journal of Biological Macromolecules, 149, 717-723.
https://doi.org/10.1016/j.ijbiomac.2020.01.305
[12] Qu, D., Lian, S., Hu, H., Sun, W. and Si, H. (2022) Characterization and Macrophages Immunomodulatory Activity of Two Water-Soluble Polysaccharides fromAbruscantoniensis.Frontiers in Nutrition, 9, Article 969512.
https://doi.org/10.3389/fnut.2022.969512
[13] Qu, D., Hu, H., Lian, S., Sun, W. and Si, H. (2022) The Protective Effects of Three Polysaccharides fromAbruscantoniensisagainst Cyclophosphamide-Induced Immunosuppression and Oxidative Damage.Frontiers in Veterinary Science, 9, Article 870042.
https://doi.org/10.3389/fvets.2022.870042
[14] Lv, Y., Yang, Y., Chen, Y., Wang, D., Lei, Y., Pan, M.,et al.(2024) Structural Characterization and Immunomodulatory Activity of a Water-Soluble Polysaccharide fromPoria cocos.International Journal of Biological Macromolecules, 261, Article ID: 129878.
https://doi.org/10.1016/j.ijbiomac.2024.129878
[15] Liu, F., Zhang, L., Feng, X., Ibrahim, S.A., Huang, W. and Liu, Y. (2021) Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide.Molecules, 26, Article 5733.
https://doi.org/10.3390/molecules26195733
[16] Lin, C., Zhang, H., Chen, L., Fang, Y. and Chen, J. (2021) Immunoregulatory Function ofDictyophoraechinovolvataSpore Polysaccharides in Immunocompromised Mice Induced by Cyclophosphamide.Open Life Sciences, 16, 620-629.
https://doi.org/10.1515/biol-2021-0055
[17] Tian, B., Liu, R., Xu, T., Cai, M., Mao, R., Huang, L.,et al.(2023) Modulating Effects ofHericiumerinaceusPolysaccharides on the Immune Response by Regulating Gut Microbiota in Cyclophosphamide‐Treated Mice.Journal of the Science of Food and Agriculture, 103, 3050-3064.
https://doi.org/10.1002/jsfa.12404
[18] Wan, P., Liu, H., Ding, M., Zhang, K., Shang, Z., Wang, Y.,et al.(2023) Physicochemical Characterization, Digestion Profile and Gut Microbiota Regulation Activity of Intracellular Polysaccharides fromChlorellazofingiensis.International Journal of Biological Macromolecules, 253, Article ID: 126881.
https://doi.org/10.1016/j.ijbiomac.2023.126881
[19] Wang, C., Huang, L., Huang, Y., Tian, X. and Liu, J. (2023) Study on Immunoregulatory Effects of Fucoidan fromSargassumgraminifoliumin Vivoand Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model.Molecules, 28, Article 7794.
https://doi.org/10.3390/molecules28237794
[20] Liu, Y., Ge, K., Yu, Z., Li, X., Wu, X., Wang, Y.,et al.(2020) Activation of NLRP3 Inflammasome in RAW 264.7 Cells by Polysaccharides Extracted fromGrateloupialivida(Harv.) Yamada.International Immunopharmacology, 85, Article ID: 106630.
https://doi.org/10.1016/j.intimp.2020.106630
[21] 曲航, 吴奕, 刘常武, 等. 鲍鱼多糖的大孔树脂纯化工艺及其免疫调节活性分析[J]. 食品工业科技, 2024, 45(13): 186-194.
[22] Zhao, Y., Yan, Y., Zhou, W., Chen, D., Huang, K., Yu, S.,et al.(2020) Effects of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry on Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice.Journal of Functional Foods, 72, Article ID: 104057.
https://doi.org/10.1016/j.jff.2020.104057
[23] Zhu, X., Guo, R., Su, X., Shang, K., Tan, C., Ma, J.,et al.(2023) Immune-Enhancing Activity of Polysaccharides and Flavonoids Derived from Phellinus Igniarius Yash.Frontiers in Pharmacology, 14, Article 1124607.
https://doi.org/10.3389/fphar.2023.1124607
[24] Jing, Y., Zhang, Y., Yan, M., Zhang, R., Hu, B., Sun, S.,et al.(2023) Structural Characterization of a Heteropolysaccharide from the Fruit of Crataegus Pinnatifida and Its Bioactivity on the Gut Microbiota of Immunocompromised Mice.Food Chemistry, 413, Article ID: 135658.
https://doi.org/10.1016/j.foodchem.2023.135658
[25] Deng, C., Fu, H., Teng, L., Hu, Z., Xu, X., Chen, J.,et al.(2013) Anti-Tumor Activity of the Regenerated Triple-Helical Polysaccharide fromDictyophoraindusiata.International Journal of Biological Macromolecules, 61, 453-458.
https://doi.org/10.1016/j.ijbiomac.2013.08.007
[26] Lee, J.S. (2009) Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body ofHericiumerinaceus.Journal of Microbiology and Biotechnology, 19, 951-959.
https://doi.org/10.4014/jmb.0901.013
[27] 王莹, 金红宇, 李耀磊, 等. 不同分子量枸杞多糖对RAW264.7巨噬细胞的免疫调节作用[J]. 中国新药杂志, 2021, 30(12): 1079-1086.
[28] Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. and Coimbra, M.A. (2015) Structure-Function Relationships of Immunostimulatory Polysaccharides: A Review.Carbohydrate Polymers, 132, 378-396.
https://doi.org/10.1016/j.carbpol.2015.05.079
[29] 陈赛红, 衣伟萌, 闵思明, 等. 太子参参须提取物对免疫抑制小鼠的免疫调节作用[J]. 中国兽医杂志, 2023, 59(6): 138-143.
[30] 孙萌, 王文地, 丽妍, 等. 基于斑马鱼模型的防风多糖调节免疫作用机制研究[J]. 中国中药杂志, 2023, 48(7): 1916-1926.
[31] 张雪, 赵苑伶, 陈林珍, 等. 基于斑马鱼模型探究多花黄精多糖的免疫调节作用[J]. 世界中医药, 2023, 18(6): 761-765, 772.
[32] 崔雪娇, 佟潇禹, 张彦龙, 等. 刺五加果多糖对RAW264.7细胞免疫调节作用[J]. 生物技术, 2022, 32(2): 182-187, 194.
[33] Zhao, M., Shi, W., Chen, X., Liu, Y., Yang, Y. and Kong, X. (2022) Regulatory Effects of Auricularia Cornea Var. Li. Polysaccharides on Immune System and Gut Microbiota in Cyclophosphamide-Induced Mice.Frontiers in Microbiology, 13, Article 1056410.
https://doi.org/10.3389/fmicb.2022.1056410
[34] 翟旭楠, 刘永武, 张娜, 等. 刺五加多糖对小鼠免疫功能的影响[J]. 中医药信息, 2020, 37(6): 42-45.
[35] 王小兰, 段鹏飞, 杨梦, 等. 生地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究[J]. 上海中医药大学学报, 2021, 35(1): 55-60, 92.
[36] Deng, X., Fu, Y., Luo, S., Luo, X., Wang, Q., Hu, M.,et al.(2019) Polysaccharide from Radix Codonopsis Has Beneficial Effects on the Maintenance of T-Cell Balance in Mice.Biomedicine & Pharmacotherapy, 112, Article ID: 108682.
https://doi.org/10.1016/j.biopha.2019.108682
[37] 董一鑫, 陈洁, 于萍, 等. 竹节参多糖的结构表征及体外免疫活性研究[J]. 中药材, 2023, 46(11): 2754-2759.
[38] Wei, J., Wang, B., Chen, Y., Wang, Q., Ahmed, A.F., Zhang, Y.,et al.(2022) The Immunomodulatory Effects of Active Ingredients fromNigella sativain RAW264.7 Cells through NF-κB/mapk Signaling Pathways.Frontiers in Nutrition, 9, Article 899797.
https://doi.org/10.3389/fnut.2022.899797
[39] Zou, Y., Zhang, Y., Fu, Y., Inngjerdingen, K., Paulsen, B., Feng, B.,et al.(2019) A Polysaccharide Isolated fromCodonopsispilosulawith Immunomodulation Effects Bothin Vitroandin Vivo.Molecules, 24, Article 3632.
https://doi.org/10.3390/molecules24203632
[40] 代道蝶, 刘梦鸽, 孙庆文, 等. 蜘蛛果多糖对RAW264.7免疫调节作用[J]. 生物技术, 2024, 34(3): 376-381.
[41] Wang, X., Qu, Y., Wang, Y., Wang, X., Xu, J., Zhao, H.,et al.(2022)β-1, 6-glucan fromPleurotuseryngiiModulates the Immunity and Gut Microbiota.FrontiersinImmunology, 13, Article 859923.
https://doi.org/10.3389/fimmu.2022.859923
[42] Zhang, W., Park, H., Yadav, D., Hwang, J., An, E., Eom, H.,et al.(2021) Comparison of Human Peripheral Blood Dendritic Cell Activation by Four Fucoidans.InternationalJournalofBiologicalMacromolecules, 174, 477-484.
https://doi.org/10.1016/j.ijbiomac.2021.01.155
[43] Feng, S., Yang, X., Weng, X., Wang, B. and Zhang, A. (2021) Aqueous Extracts from CultivatedCistanchedeserticolaY.C. Ma as Polysaccharide Adjuvant Promote Immune Responses via Facilitating Dendritic Cell Activation.JournalofEthnopharmacology, 277, Article ID: 114256.
https://doi.org/10.1016/j.jep.2021.114256
[44] Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity.NatureReviewsImmunology, 16, 341-352.
https://doi.org/10.1038/nri.2016.42
[45] Gareau, M.G., Sherman, P.M. and Walker, W.A. (2010) Probiotics and the Gut Microbiota in Intestinal Health and Disease.NatureReviewsGastroenterology&Hepatology, 7, 503-514.
https://doi.org/10.1038/nrgastro.2010.117
[46] Fink, L.N., Zeuthen, L.H., Christensen, H.R., Morandi, B., Frokiaer, H. and Ferlazzo, G. (2007) Distinct Gut-Derived Lactic Acid Bacteria Elicit Divergent Dendritic Cell-Mediated NK Cell Responses.InternationalImmunology, 19, 1319-1327.
https://doi.org/10.1093/intimm/dxm103
[47] Delcenserie, V., Martel, D., Lamoureux, M.,et al.(2008) Immunomodulatory Effects of Probiotics in the Intestinal Tract.CurrentIssuesinMolecularBiology, 10, 37-53.
[48] Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. and Apostolopoulos, V. (2019) Immunomodulatory Effects of Probiotics: Can They Be Used to Treat Allergies and Autoimmune Diseases?Maturitas, 119, 25-38.
https://doi.org/10.1016/j.maturitas.2018.11.002
[49] Ying, M., Yu, Q., Zheng, B., Wang, H., Wang, J., Chen, S.,et al.(2020) Cultured Cordyceps Sinensis Polysaccharides Modulate Intestinal Mucosal Immunity and Gut Microbiota in Cyclophosphamide-Treated Mice.CarbohydratePolymers, 235, Article ID: 115957.
https://doi.org/10.1016/j.carbpol.2020.115957
[50] Zhou, F., Jiang, X., Wang, T., Zhang, B. and Zhao, H. (2018)LyciumbarbarumPolysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus.FrontiersinMicrobiology, 9, Article 1034.
https://doi.org/10.3389/fmicb.2018.01034
[51] Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041
[52] Peng, L., Li, Z., Green, R.S., Holzmanr, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers.TheJournalofNutrition, 139, 1619-1625.
https://doi.org/10.3945/jn.109.104638
[53] Li, P., Ge, J. and Li, H. (2019) Lysine Acetyltransferases and Lysine Deacetylases as Targets for Cardiovascular Disease.NatureReviewsCardiology, 17, 96-115.
https://doi.org/10.1038/s41569-019-0235-9
[54] Ren, D., Li, S., Lin, H., Xia, Y., Li, Z., Bo, P.,et al.(2022)PanaxquinquefoliusPolysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways.JournalofImmunologyResearch, 2022, Article ID: 4126273.
https://doi.org/10.1155/2022/4126273
[55] Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W.,et al.(2021)ScutellariabaicalensisGeorgi Polysaccharide Ameliorates DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota.InternationalJournalofBiologicalMacromolecules, 166, 1035-1045.
https://doi.org/10.1016/j.ijbiomac.2020.10.259
[56] 查苏娜, 苏日娜, 齐和日玛, 等. 刺玫根多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用[J]. 天然产物研究与开发, 2024, 36(2): 196-205, 292.
[57] Leung, M.Y.K., Liu, C., Koon, J.C.M. and Fung, K.P. (2006) Polysaccharide Biological Response Modifiers.ImmunologyLetters, 105, 101-114.
https://doi.org/10.1016/j.imlet.2006.01.009
[58] Yang, H., Song, X., Wei, Z., Xia, C., Wang, J., Shen, L.,et al.(2020) TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats.ACSChemicalNeuroscience, 11, 2978-2988.
https://doi.org/10.1021/acschemneuro.0c00029
[59] Zhang, Q., Liu, M., Li, L., Chen, M., Puno, P.T., Bao, W.,et al.(2021) Cordyceps Polysaccharide Marker CCP Modulates Immune Responses via Highly Selective TLR4/MyD88/p38 Axis.CarbohydratePolymers, 271, Article ID: 118443.
https://doi.org/10.1016/j.carbpol.2021.118443
[60] Zeng, F., Li, Y., Zhang, X., Shen, L., Zhao, X., Beta, T.,et al.(2024) Immune Regulation and Inflammation Inhibition of Arctium Lappa L. Polysaccharides by TLR4/NF-κB Signaling Pathway in Cells.InternationalJournalofBiologicalMacromolecules, 254, Article ID: 127700.
https://doi.org/10.1016/j.ijbiomac.2023.127700
[61] Chen, D., Chen, G., Ding, Y., Wan, P., Peng, Y., Chen, C.,et al.(2019) Polysaccharides from the Flowers of Tea (CamelliasinensisL.) Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Immunosuppression.JournalofFunctionalFoods, 61, Article ID: 103470.
https://doi.org/10.1016/j.jff.2019.103470
[62] Tan, S. (2012) The Leucocyteβ2(CD18) Integrins: The Structure, Functional Regulation and Signalling Properties.BioscienceReports, 32, 241-269.
https://doi.org/10.1042/bsr20110101
[63] Lan, H., Cheng, Y., Mu, J., Huang, Y., Chen, H., Zhao, L.,et al.(2021) Glucose-rich Polysaccharide from Dried ‘Shixia’ Longan Activates Macrophages through Ca2+and CR3-Mediated MAPKs and PI3K-AKT Pathways.InternationalJournalofBiologicalMacromolecules, 167, 845-853.
https://doi.org/10.1016/j.ijbiomac.2020.11.040
[64] Talapphet, N., Palanisamy, S., Li, C., Ma, N., Prabhu, N.M. and You, S. (2021) Polysaccharide Extracted from Taraxacum Platycarpum Root Exerts Immunomodulatory Activity via MAPK and NF-κB Pathways in RAW264.7 Cells.JournalofEthnopharmacology, 281, Article ID: 114519.
https://doi.org/10.1016/j.jep.2021.114519
[65] Deng, C., Fu, H., Shang, J., Chen, J. and Xu, X. (2018) Dectin-1 Mediates the Immunoenhancement Effect of the Polysaccharide fromDictyophoraindusiata.InternationalJournalofBiologicalMacromolecules, 109, 369-374.
https://doi.org/10.1016/j.ijbiomac.2017.12.113
[66] Qiao, D., He, X., Wei, C., Xia, L. and Bao, L. (2016) Effects ofHyriopsiscumingiiPolysaccharides on Mice Immunologic Receptor, Transcription Factor, and Cytokine.JournalofFoodScience, 81, H1288-H1294.
https://doi.org/10.1111/1750-3841.13288
[67] Kang, H., Lee, M., Lee, J., Choi, Y. and Choi, Y. (2016) Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and HasinVivoAnti-Inflammatory Effects in Mice.Nutrients, 8, Article 188.
https://doi.org/10.3390/nu8040188

为你推荐






Baidu
map