[1] |
Huang, F., Zhang, R., Liu, Y., Xiao, J., Liu, L., Wei, Z.,et al.(2016) Dietary Litchi Pulp Polysaccharides Could Enhance Immunomodulatory and Antioxidant Effects in Mice.International Journal of Biological Macromolecules, 92, 1067-1073. https://doi.org/10.1016/j.ijbiomac.2016.08.021 |
[2] |
Raje, N. and Dinakar, C. (2015) Overview of Immunodeficiency Disorders.Immunology and Allergy Clinics of North America, 35, 599-623. https://doi.org/10.1016/j.iac.2015.07.001 |
[3] |
Feng, L., Han, N., Han, Y., Shang, M., Liang, T., Liu, Z.,et al.(2024) Structural Analysis of a Soluble Polysaccharide GSPA-0.3 from the Root ofPanax ginsengC. A. Meyer and Its Adjuvant Activity with Mechanism Investigation.Carbohydrate Polymers, 326, Article ID: 121591. https://doi.org/10.1016/j.carbpol.2023.121591 |
[4] |
Zhang, X., Liu, Z., Zhong, C., Pu, Y., Yang, Z. and Bao, Y. (2021) Structure Characteristics and Immunomodulatory Activities of a Polysaccharide RGRP-1b from Radix Ginseng Rubra.International Journal of Biological Macromolecules, 189, 980-992. https://doi.org/10.1016/j.ijbiomac.2021.08.176 |
[5] |
Li, Y., Zheng, J., Wang, Y., Yang, H., Cao, L., Gan, S.,et al.(2023) Immuno-Stimulatory Activity of Astragalus Polysaccharides in Cyclophosphamide-Induced Immunosuppressed Mice by Regulating Gut Microbiota.International Journal of Biological Macromolecules, 242, Article ID: 124789. https://doi.org/10.1016/j.ijbiomac.2023.124789 |
[6] |
Aipire, A., Mahabati, M., Cai, S., Wei, X., Yuan, P., Aimaier, A.,et al.(2020) The Immunostimulatory Activity of Polysaccharides fromGlycyrrhizauralensis.PeerJ, 8, e8294. https://doi.org/10.7717/peerj.8294 |
[7] |
Wang, Y., Sun, M., Jin, H., Yang, J., Kang, S., Liu, Y.,et al.(2021) Effects ofLyciumbarbarumPolysaccharides on Immunity and the Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice.Frontiers in Microbiology, 12, Article 701566. https://doi.org/10.3389/fmicb.2021.701566 |
[8] |
Ding, Y., Yan, Y., Chen, D., Ran, L., Mi, J., Lu, L.,et al.(2019) Modulating Effects of Polysaccharides from the Fruits ofLyciumbarbarumon the Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice.Food & Function, 10, 3671-3683. https://doi.org/10.1039/c9fo00638a |
[9] |
Zhang, Y., Tang, Y., Cai, L., He, J., Chen, L., Ouyang, K.,et al.(2023) Chimonanthus Nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice.Oxidative Medicine and Cellular Longevity, 2023, Article ID: 6208680. https://doi.org/10.1155/2023/6208680 |
[10] |
Liu, W., Yan, R. and Zhang, L. (2019) Dendrobium Sonia Polysaccharide Regulates Immunity and Restores the Dysbiosis of the Gut Microbiota of the Cyclophosphamide-Induced Immunosuppressed Mice.Chinese Journal of Natural Medicines, 17, 600-607. https://doi.org/10.1016/s1875-5364(19)30062-7 |
[11] |
Li, M., Yue, H., Wang, Y., Guo, C., Du, Z., Jin, C.,et al.(2020) Intestinal Microbes Derived Butyrate Is Related to the Immunomodulatory Activities of Dendrobium Officinale Polysaccharide.International Journal of Biological Macromolecules, 149, 717-723. https://doi.org/10.1016/j.ijbiomac.2020.01.305 |
[12] |
Qu, D., Lian, S., Hu, H., Sun, W. and Si, H. (2022) Characterization and Macrophages Immunomodulatory Activity of Two Water-Soluble Polysaccharides fromAbruscantoniensis.Frontiers in Nutrition, 9, Article 969512. https://doi.org/10.3389/fnut.2022.969512 |
[13] |
Qu, D., Hu, H., Lian, S., Sun, W. and Si, H. (2022) The Protective Effects of Three Polysaccharides fromAbruscantoniensisagainst Cyclophosphamide-Induced Immunosuppression and Oxidative Damage.Frontiers in Veterinary Science, 9, Article 870042. https://doi.org/10.3389/fvets.2022.870042 |
[14] |
Lv, Y., Yang, Y., Chen, Y., Wang, D., Lei, Y., Pan, M.,et al.(2024) Structural Characterization and Immunomodulatory Activity of a Water-Soluble Polysaccharide fromPoria cocos.International Journal of Biological Macromolecules, 261, Article ID: 129878. https://doi.org/10.1016/j.ijbiomac.2024.129878 |
[15] |
Liu, F., Zhang, L., Feng, X., Ibrahim, S.A., Huang, W. and Liu, Y. (2021) Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide.Molecules, 26, Article 5733. https://doi.org/10.3390/molecules26195733 |
[16] |
Lin, C., Zhang, H., Chen, L., Fang, Y. and Chen, J. (2021) Immunoregulatory Function ofDictyophoraechinovolvataSpore Polysaccharides in Immunocompromised Mice Induced by Cyclophosphamide.Open Life Sciences, 16, 620-629. https://doi.org/10.1515/biol-2021-0055 |
[17] |
Tian, B., Liu, R., Xu, T., Cai, M., Mao, R., Huang, L.,et al.(2023) Modulating Effects ofHericiumerinaceusPolysaccharides on the Immune Response by Regulating Gut Microbiota in Cyclophosphamide‐Treated Mice.Journal of the Science of Food and Agriculture, 103, 3050-3064. https://doi.org/10.1002/jsfa.12404 |
[18] |
Wan, P., Liu, H., Ding, M., Zhang, K., Shang, Z., Wang, Y.,et al.(2023) Physicochemical Characterization, Digestion Profile and Gut Microbiota Regulation Activity of Intracellular Polysaccharides fromChlorellazofingiensis.International Journal of Biological Macromolecules, 253, Article ID: 126881. https://doi.org/10.1016/j.ijbiomac.2023.126881 |
[19] |
Wang, C., Huang, L., Huang, Y., Tian, X. and Liu, J. (2023) Study on Immunoregulatory Effects of Fucoidan fromSargassumgraminifoliumin Vivoand Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model.Molecules, 28, Article 7794. https://doi.org/10.3390/molecules28237794 |
[20] |
Liu, Y., Ge, K., Yu, Z., Li, X., Wu, X., Wang, Y.,et al.(2020) Activation of NLRP3 Inflammasome in RAW 264.7 Cells by Polysaccharides Extracted fromGrateloupialivida(Harv.) Yamada.International Immunopharmacology, 85, Article ID: 106630. https://doi.org/10.1016/j.intimp.2020.106630 |
[21] |
曲航, 吴奕, 刘常武, 等. 鲍鱼多糖的大孔树脂纯化工艺及其免疫调节活性分析[J]. 食品工业科技, 2024, 45(13): 186-194. |
[22] |
Zhao, Y., Yan, Y., Zhou, W., Chen, D., Huang, K., Yu, S.,et al.(2020) Effects of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry on Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice.Journal of Functional Foods, 72, Article ID: 104057. https://doi.org/10.1016/j.jff.2020.104057 |
[23] |
Zhu, X., Guo, R., Su, X., Shang, K., Tan, C., Ma, J.,et al.(2023) Immune-Enhancing Activity of Polysaccharides and Flavonoids Derived from Phellinus Igniarius Yash.Frontiers in Pharmacology, 14, Article 1124607. https://doi.org/10.3389/fphar.2023.1124607 |
[24] |
Jing, Y., Zhang, Y., Yan, M., Zhang, R., Hu, B., Sun, S.,et al.(2023) Structural Characterization of a Heteropolysaccharide from the Fruit of Crataegus Pinnatifida and Its Bioactivity on the Gut Microbiota of Immunocompromised Mice.Food Chemistry, 413, Article ID: 135658. https://doi.org/10.1016/j.foodchem.2023.135658 |
[25] |
Deng, C., Fu, H., Teng, L., Hu, Z., Xu, X., Chen, J.,et al.(2013) Anti-Tumor Activity of the Regenerated Triple-Helical Polysaccharide fromDictyophoraindusiata.International Journal of Biological Macromolecules, 61, 453-458. https://doi.org/10.1016/j.ijbiomac.2013.08.007 |
[26] |
Lee, J.S. (2009) Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body ofHericiumerinaceus.Journal of Microbiology and Biotechnology, 19, 951-959. https://doi.org/10.4014/jmb.0901.013 |
[27] |
王莹, 金红宇, 李耀磊, 等. 不同分子量枸杞多糖对RAW264.7巨噬细胞的免疫调节作用[J]. 中国新药杂志, 2021, 30(12): 1079-1086. |
[28] |
Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. and Coimbra, M.A. (2015) Structure-Function Relationships of Immunostimulatory Polysaccharides: A Review.Carbohydrate Polymers, 132, 378-396. https://doi.org/10.1016/j.carbpol.2015.05.079 |
[29] |
陈赛红, 衣伟萌, 闵思明, 等. 太子参参须提取物对免疫抑制小鼠的免疫调节作用[J]. 中国兽医杂志, 2023, 59(6): 138-143. |
[30] |
孙萌, 王文地, 丽妍, 等. 基于斑马鱼模型的防风多糖调节免疫作用机制研究[J]. 中国中药杂志, 2023, 48(7): 1916-1926. |
[31] |
张雪, 赵苑伶, 陈林珍, 等. 基于斑马鱼模型探究多花黄精多糖的免疫调节作用[J]. 世界中医药, 2023, 18(6): 761-765, 772. |
[32] |
崔雪娇, 佟潇禹, 张彦龙, 等. 刺五加果多糖对RAW264.7细胞免疫调节作用[J]. 生物技术, 2022, 32(2): 182-187, 194. |
[33] |
Zhao, M., Shi, W., Chen, X., Liu, Y., Yang, Y. and Kong, X. (2022) Regulatory Effects of Auricularia Cornea Var. Li. Polysaccharides on Immune System and Gut Microbiota in Cyclophosphamide-Induced Mice.Frontiers in Microbiology, 13, Article 1056410. https://doi.org/10.3389/fmicb.2022.1056410 |
[34] |
翟旭楠, 刘永武, 张娜, 等. 刺五加多糖对小鼠免疫功能的影响[J]. 中医药信息, 2020, 37(6): 42-45. |
[35] |
王小兰, 段鹏飞, 杨梦, 等. 生地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究[J]. 上海中医药大学学报, 2021, 35(1): 55-60, 92. |
[36] |
Deng, X., Fu, Y., Luo, S., Luo, X., Wang, Q., Hu, M.,et al.(2019) Polysaccharide from Radix Codonopsis Has Beneficial Effects on the Maintenance of T-Cell Balance in Mice.Biomedicine & Pharmacotherapy, 112, Article ID: 108682. https://doi.org/10.1016/j.biopha.2019.108682 |
[37] |
董一鑫, 陈洁, 于萍, 等. 竹节参多糖的结构表征及体外免疫活性研究[J]. 中药材, 2023, 46(11): 2754-2759. |
[38] |
Wei, J., Wang, B., Chen, Y., Wang, Q., Ahmed, A.F., Zhang, Y.,et al.(2022) The Immunomodulatory Effects of Active Ingredients fromNigella sativain RAW264.7 Cells through NF-κB/mapk Signaling Pathways.Frontiers in Nutrition, 9, Article 899797. https://doi.org/10.3389/fnut.2022.899797 |
[39] |
Zou, Y., Zhang, Y., Fu, Y., Inngjerdingen, K., Paulsen, B., Feng, B.,et al.(2019) A Polysaccharide Isolated fromCodonopsispilosulawith Immunomodulation Effects Bothin Vitroandin Vivo.Molecules, 24, Article 3632. https://doi.org/10.3390/molecules24203632 |
[40] |
代道蝶, 刘梦鸽, 孙庆文, 等. 蜘蛛果多糖对RAW264.7免疫调节作用[J]. 生物技术, 2024, 34(3): 376-381. |
[41] |
Wang, X., Qu, Y., Wang, Y., Wang, X., Xu, J., Zhao, H.,et al.(2022)β-1, 6-glucan fromPleurotuseryngiiModulates the Immunity and Gut Microbiota.FrontiersinImmunology, 13, Article 859923. https://doi.org/10.3389/fimmu.2022.859923 |
[42] |
Zhang, W., Park, H., Yadav, D., Hwang, J., An, E., Eom, H.,et al.(2021) Comparison of Human Peripheral Blood Dendritic Cell Activation by Four Fucoidans.InternationalJournalofBiologicalMacromolecules, 174, 477-484. https://doi.org/10.1016/j.ijbiomac.2021.01.155 |
[43] |
Feng, S., Yang, X., Weng, X., Wang, B. and Zhang, A. (2021) Aqueous Extracts from CultivatedCistanchedeserticolaY.C. Ma as Polysaccharide Adjuvant Promote Immune Responses via Facilitating Dendritic Cell Activation.JournalofEthnopharmacology, 277, Article ID: 114256. https://doi.org/10.1016/j.jep.2021.114256 |
[44] |
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity.NatureReviewsImmunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42 |
[45] |
Gareau, M.G., Sherman, P.M. and Walker, W.A. (2010) Probiotics and the Gut Microbiota in Intestinal Health and Disease.NatureReviewsGastroenterology&Hepatology, 7, 503-514. https://doi.org/10.1038/nrgastro.2010.117 |
[46] |
Fink, L.N., Zeuthen, L.H., Christensen, H.R., Morandi, B., Frokiaer, H. and Ferlazzo, G. (2007) Distinct Gut-Derived Lactic Acid Bacteria Elicit Divergent Dendritic Cell-Mediated NK Cell Responses.InternationalImmunology, 19, 1319-1327. https://doi.org/10.1093/intimm/dxm103 |
[47] |
Delcenserie, V., Martel, D., Lamoureux, M.,et al.(2008) Immunomodulatory Effects of Probiotics in the Intestinal Tract.CurrentIssuesinMolecularBiology, 10, 37-53. |
[48] |
Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. and Apostolopoulos, V. (2019) Immunomodulatory Effects of Probiotics: Can They Be Used to Treat Allergies and Autoimmune Diseases?Maturitas, 119, 25-38. https://doi.org/10.1016/j.maturitas.2018.11.002 |
[49] |
Ying, M., Yu, Q., Zheng, B., Wang, H., Wang, J., Chen, S.,et al.(2020) Cultured Cordyceps Sinensis Polysaccharides Modulate Intestinal Mucosal Immunity and Gut Microbiota in Cyclophosphamide-Treated Mice.CarbohydratePolymers, 235, Article ID: 115957. https://doi.org/10.1016/j.carbpol.2020.115957 |
[50] |
Zhou, F., Jiang, X., Wang, T., Zhang, B. and Zhao, H. (2018)LyciumbarbarumPolysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus.FrontiersinMicrobiology, 9, Article 1034. https://doi.org/10.3389/fmicb.2018.01034 |
[51] |
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.Cell, 165, 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041 |
[52] |
Peng, L., Li, Z., Green, R.S., Holzmanr, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers.TheJournalofNutrition, 139, 1619-1625. https://doi.org/10.3945/jn.109.104638 |
[53] |
Li, P., Ge, J. and Li, H. (2019) Lysine Acetyltransferases and Lysine Deacetylases as Targets for Cardiovascular Disease.NatureReviewsCardiology, 17, 96-115. https://doi.org/10.1038/s41569-019-0235-9 |
[54] |
Ren, D., Li, S., Lin, H., Xia, Y., Li, Z., Bo, P.,et al.(2022)PanaxquinquefoliusPolysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways.JournalofImmunologyResearch, 2022, Article ID: 4126273. https://doi.org/10.1155/2022/4126273 |
[55] |
Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W.,et al.(2021)ScutellariabaicalensisGeorgi Polysaccharide Ameliorates DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota.InternationalJournalofBiologicalMacromolecules, 166, 1035-1045. https://doi.org/10.1016/j.ijbiomac.2020.10.259 |
[56] |
查苏娜, 苏日娜, 齐和日玛, 等. 刺玫根多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用[J]. 天然产物研究与开发, 2024, 36(2): 196-205, 292. |
[57] |
Leung, M.Y.K., Liu, C., Koon, J.C.M. and Fung, K.P. (2006) Polysaccharide Biological Response Modifiers.ImmunologyLetters, 105, 101-114. https://doi.org/10.1016/j.imlet.2006.01.009 |
[58] |
Yang, H., Song, X., Wei, Z., Xia, C., Wang, J., Shen, L.,et al.(2020) TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats.ACSChemicalNeuroscience, 11, 2978-2988. https://doi.org/10.1021/acschemneuro.0c00029 |
[59] |
Zhang, Q., Liu, M., Li, L., Chen, M., Puno, P.T., Bao, W.,et al.(2021) Cordyceps Polysaccharide Marker CCP Modulates Immune Responses via Highly Selective TLR4/MyD88/p38 Axis.CarbohydratePolymers, 271, Article ID: 118443. https://doi.org/10.1016/j.carbpol.2021.118443 |
[60] |
Zeng, F., Li, Y., Zhang, X., Shen, L., Zhao, X., Beta, T.,et al.(2024) Immune Regulation and Inflammation Inhibition of Arctium Lappa L. Polysaccharides by TLR4/NF-κB Signaling Pathway in Cells.InternationalJournalofBiologicalMacromolecules, 254, Article ID: 127700. https://doi.org/10.1016/j.ijbiomac.2023.127700 |
[61] |
Chen, D., Chen, G., Ding, Y., Wan, P., Peng, Y., Chen, C.,et al.(2019) Polysaccharides from the Flowers of Tea (CamelliasinensisL.) Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Immunosuppression.JournalofFunctionalFoods, 61, Article ID: 103470. https://doi.org/10.1016/j.jff.2019.103470 |
[62] |
Tan, S. (2012) The Leucocyteβ2(CD18) Integrins: The Structure, Functional Regulation and Signalling Properties.BioscienceReports, 32, 241-269. https://doi.org/10.1042/bsr20110101 |
[63] |
Lan, H., Cheng, Y., Mu, J., Huang, Y., Chen, H., Zhao, L.,et al.(2021) Glucose-rich Polysaccharide from Dried ‘Shixia’ Longan Activates Macrophages through Ca2+and CR3-Mediated MAPKs and PI3K-AKT Pathways.InternationalJournalofBiologicalMacromolecules, 167, 845-853. https://doi.org/10.1016/j.ijbiomac.2020.11.040 |
[64] |
Talapphet, N., Palanisamy, S., Li, C., Ma, N., Prabhu, N.M. and You, S. (2021) Polysaccharide Extracted from Taraxacum Platycarpum Root Exerts Immunomodulatory Activity via MAPK and NF-κB Pathways in RAW264.7 Cells.JournalofEthnopharmacology, 281, Article ID: 114519. https://doi.org/10.1016/j.jep.2021.114519 |
[65] |
Deng, C., Fu, H., Shang, J., Chen, J. and Xu, X. (2018) Dectin-1 Mediates the Immunoenhancement Effect of the Polysaccharide fromDictyophoraindusiata.InternationalJournalofBiologicalMacromolecules, 109, 369-374. https://doi.org/10.1016/j.ijbiomac.2017.12.113 |
[66] |
Qiao, D., He, X., Wei, C., Xia, L. and Bao, L. (2016) Effects ofHyriopsiscumingiiPolysaccharides on Mice Immunologic Receptor, Transcription Factor, and Cytokine.JournalofFoodScience, 81, H1288-H1294. https://doi.org/10.1111/1750-3841.13288 |
[67] |
Kang, H., Lee, M., Lee, J., Choi, Y. and Choi, Y. (2016) Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and HasinVivoAnti-Inflammatory Effects in Mice.Nutrients, 8, Article 188. https://doi.org/10.3390/nu8040188 |