[1] |
Yang, Y., Gong, F., Liu, X., Li, Y., Chen, Q. and Pan, S. (2024) Construction of NiP/Ni(OH)2/Ag-ZIF Photocatalyst with 2-Methylimidazole Framework for Rapid Removal of Tetracycline.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 683, Article ID: 132997. https://doi.org/10.1016/j.colsurfa.2023.132997 |
[2] |
He, N., Yu, Z., Yang, G., Tan, Q., Wang, J. and Chen, Y. (2024) Designing with A-Site Cation Defects in LaFeO3: Removal of Tetracycline Hydrochloride in Complex Environments Using Photo-Fenton Synergy.Chemical Engineering Journal, 484, Article ID: 149613. https://doi.org/10.1016/j.cej.2024.149613 |
[3] |
Yang, J., Du, Y., Li, W., Shan, S., Hu, T. and Su, H. (2024) Iron Oxide/alginate Hydrogel Composites for Removal of Tetracycline via Adsorption-Coupled Fenton-Like Reaction.Materials Chemistry and Physics, 315, Article ID: 129034. https://doi.org/10.1016/j.matchemphys.2024.129034 |
[4] |
Feng, S., Xie, T., Wang, J., Yang, J., Kong, D., Liu, C.,et al. (2023) Photocatalytic Activation of PMS over Magnetic Heterojunction Photocatalyst SrTiO3/BaFe12O19for Tetracycline Ultrafast Degradation.Chemical Engineering Journal, 470, Article ID: 143900. https://doi.org/10.1016/j.cej.2023.143900 |
[5] |
An, B., Liu, J., Zhu, B., Liu, F., Jiang, G., Duan, X.,et al. (2023) Returnable Mos2@carbon Nitride Nanotube Composite Hollow Spheres Drive Photo-Self-Fenton-Pms System for Synergistic Catalytic and Photocatalytic Tetracycline Degradation.Chemical Engineering Journal, 478, Article ID: 147344. https://doi.org/10.1016/j.cej.2023.147344 |
[6] |
Zhang, D., He, Q., Hu, X., Zhang, K., Chen, C. and Xue, Y. (2021) Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 615, Article ID: 126254. https://doi.org/10.1016/j.colsurfa.2021.126254 |
[7] |
Li, Y., Fu, M., Wang, R., Wu, S. and Tan, X. (2022) Efficient Removal TC by Zn@SnO2/PI via the Synergy of Adsorption and Photocatalysis under Visible Light.Chemical Engineering Journal, 444, Article ID: 136567. https://doi.org/10.1016/j.cej.2022.136567 |
[8] |
Xu, H., Deng, Y., Li, M., Zhang, K., Zou, J., Yang, Y.,et al. (2023) Removal of Tetracycline in Nitrification Membrane Bioreactors with Different Ammonia Loading Rates: Performance, Metabolic Pathway, and Key Contributors.Environmental Pollution, 332, Article ID: 121922. https://doi.org/10.1016/j.envpol.2023.121922 |
[9] |
Zhang, C., Ni, J., Ding, N. and Liu, H. (2023) Visible-Light-Assisted PMS Activation by Heterojunction Photocatalyst MgIn2S4/Bi2O3for Tetracycline Degradation.Catalysis Communications, 183, Article ID: 106773. https://doi.org/10.1016/j.catcom.2023.106773 |
[10] |
Dhiman, P., Kumar, A., Rana, G. and Sharma, G. (2023) Cobalt-Zinc Nanoferrite for Synergistic Photocatalytic and Peroxymonosulfate-Assisted Degradation of Sulfosalicylic Acid.Journal of Materials Science, 58, 9938-9966. https://doi.org/10.1007/s10853-023-08669-z |
[11] |
Le, V., Nguyen, T., Doong, R., Chen, C., Tran, C. and Dong, C. (2023) Peroxymonosulfate Activation over NiCo2O4/MnOOH for Enhancing Ciprofloxacin Degradation in Water.Environmental Technology & Innovation, 30, Article ID: 103117. https://doi.org/10.1016/j.eti.2023.103117 |
[12] |
You, Y., Xu, G., Yang, X., Liu, Y., Ma, X. and Ji, Y. (2024) Cu-Fe-Ni Layered Hydroxides/Magnetic Biochar Composite as Peroxymonosulfate Activator for Removal of Enrofloxacin.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 683, Article ID: 133082. https://doi.org/10.1016/j.colsurfa.2023.133082 |
[13] |
Gao, S., Pan, J., Zhang, Y., Zhao, Z. and Cui, J. (2024) Mn-NSC Co-Doped Modified Biochar/permonosulfate System for Degradation of Ciprofloxacin in Wastewater.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 680, Article ID: 132640. https://doi.org/10.1016/j.colsurfa.2023.132640 |
[14] |
Tan, Y., Li, C., Sun, Z., Bian, R., Dong, X., Zhang, X.,et al. (2020) Natural Diatomite Mediated Spherically Monodispersed CoFe2O4Nanoparticles for Efficient Catalytic Oxidation of Bisphenol a through Activating Peroxymonosulfate.Chemical Engineering Journal, 388, Article ID: 124386. https://doi.org/10.1016/j.cej.2020.124386 |
[15] |
Li, J., Li, S., Cao, Z., Zhao, Y., Wang, Q. and Cheng, H. (2023) Heterostructure CoFe2O4/Kaolinite Composite for Efficient Degradation of Tetracycline Hydrochloride through Synergetic Photo-Fenton Reaction.Applied Clay Science, 244, Article ID: 107102. https://doi.org/10.1016/j.clay.2023.107102 |
[16] |
Gong, C., Chen, F., Yang, Q., Luo, K., Yao, F., Wang, S.,et al. (2017) Heterogeneous Activation of Peroxymonosulfate by Fe-Co Layered Doubled Hydroxide for Efficient Catalytic Degradation of Rhoadmine B.Chemical Engineering Journal, 321, 222-232. https://doi.org/10.1016/j.cej.2017.03.117 |
[17] |
Bai, J., Zhang, X., Wang, C., Li, X., Xu, Z., Jing, C.,et al. (2024) The Adsorption-Photocatalytic Synergism of LDHs-Based Nanocomposites on the Removal of Pollutants in Aqueous Environment: A Critical Review.Journal of Cleaner Production, 436, Article ID: 140705. https://doi.org/10.1016/j.jclepro.2024.140705 |
[18] |
Deng, J., Xiao, L., Yuan, S., Wang, W., Zhan, X. and Hu, Z. (2021) Activation of Peroxymonosulfate by Cofeni Layered Double Hydroxide/Graphene Oxide (LDH/GO) for the Degradation of Gatifloxacin.Separation and Purification Technology, 255, Article ID: 117685. https://doi.org/10.1016/j.seppur.2020.117685 |
[19] |
Zhang, S., Zhang, L., Liu, L., Wang, X., Pan, J., Pan, X.,et al. (2022) NiCo-LDH@MnO2Nanocages as Advanced Catalysts for Efficient Formaldehyde Elimination.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 650, Article ID: 129619. https://doi.org/10.1016/j.colsurfa.2022.129619 |