双参数化动力学暗能量对中微子质量的影响
The Impact of Two-Parametrization Dynamical Dark Energy on the Neutrino Mass
摘要: 中微子绝对质量的测量和暗能量本质属性的探究是宇宙学前沿的两个重要科学问题。中微子振荡现象表明中微子具有非零质量,KATRIN实验给出的最新结果mν=0.8 eV,宇宙学观测限制测出中微子质量总和的上限为∑mv≤0.1 eV。本文联合不同的主流观测数据,包括宇宙微波背景辐射数据、重子声学振荡数据以及Ia型超新星数据,探究两种双参数化动力学暗能量模型中中微子质量的拟合情况。这两种参数化分别为对数形式参数化和振荡形式参数化。相较于Chevallier-Polarski-Linder参数化,它们可以克服状态方程的演化发散问题(z→−1),成功探测暗能量在全宇宙中的演化。我们发现对数形式参数化和振荡形式参数化暗能量增大了中微子质量和的拟合值上限,且扩大限制宇宙学模型的观测数据样本可以压低中微子质量拟合值的上限。
Abstract: The measurement of the absolute mass of neutrinos and the investigation of the intrinsic properties of dark energy are two important scientific issues at the forefront of cosmology. The neutrino oscillation phenomenon shows that neutrinos have non-zero mass, and the latest results given by the KATRIN experimentmν=0.8 eV, the upper limit of the cosmological observational limit on the total of measured neutrino masses is∑mv≤0.1 eV. In this paper, we combine different mainstream observational data, including cosmic microwave background radiation data, baryon acoustic oscillation data, and type Ia supernova data, to explore the fit of neutrino masses in two kinds two parametrizations dynamical dark energy models. These two parameterizations are the logarithmic parameterization and the oscillatory parameterization, respectively. Compared to the Chevallier-Polarski-Linder parameterization, they can overcome the evolutionary divergence problem of the equation of state (z→−1) and successfully probe the evolution of dark energy in the whole universe. We find that the logarithmic parameterization and the oscillatory parameterization of the dark energy increase the upper limit of the fitted values of the total of neutrino mass and that expanding the sample of observational data limiting the cosmological model depresses the upper limit of the fitted values of the neutrino mass.
文章引用:赵欣悦, 郭瑞芸, 邱佳康. 双参数化动力学暗能量对中微子质量的影响[J]. 天文与天体物理, 2024, 12(3): 34-43. https://doi.org/10.12677/aas.2024.123004

1. 引言

1998年日本的超级神冈探测项目[1]和随后的SNO实验[2]证实中微子在传播过程中发生振荡现象[3]。该现象意味着中微子具有极其微小的质量和三代中微子间存在混合,即电子中微子、缪子中微子以及陶子中微子间可以相互转化。目前实验上还没有确定中微子的大小。通过近几十年众多中微子实验的努力,

相关物理参数的整体数值拟合结果为 Δ m 21 2 7. 41 0.20 +0.21 × 10 5 eV 2 Δ m 31 2 2.511 0.027 +0.028 × 10 3 eV 2 [4] [5]。通过该结果,我们仅能得出中微子间的两种质量排序情况,即 m 1 < m 2 m 3 (简称正排序,NH)以及 m 3 m 1 < m 2 (简称逆排序,IH)。当然,有些时候为了方便讨论,人们也会假设三代中微子质量相等,即 m 1 = m 2 = m 3 (简称简并排序,DH)。对于中微子绝对质量的大小,目前实验上所能给出的最新结果是KATRIN实验中 m ν =0.8eV [6]。对中微子质量更强的限制则是来自宇宙学,即 m v 0.1eV [4] [7]-[9]。联合天文观测数据限制包含中微子参数的宇宙学模型是测量中微子质量的有效方法之一。由于有质量的中微子既能影响宇宙微波背景辐射各向异性的功率谱,又能影响宇宙大尺度结构形成中的物质功率谱[10]-[12]。因此,利用宇宙微波背景辐射观测和宇宙大尺度结构观测结果可以探究三代中微子的总质量 m v

宇宙加速膨胀[13] [14]的发现表明,当前的宇宙主要由具有负压的暗能量主导[15] [16]。宇宙学描述暗能量性质的物理量是暗能量状态方程参数w ( w=p/ρ ,其中p是暗能量压强, ρ 是暗能量密度)。根据暗能量状态方程w的不同,暗能量可以大致划分为以下三种情况: 1<w< 1/3 时为精质暗能量[17] w<1 时为幽灵暗能量[18]w穿越−1时为精灵暗能量[19]。在过去的研究里,大量的宇宙学观测项目支持的是宇宙学常数模型(简称ΛCDM) [20]-[24],即宇宙是空间平坦的,其成分主要包括大约25%的冷暗物质(CDM),75%的以爱因斯坦宇宙学常数(Λ)形式存在的暗能量。宇宙微波背景辐射各向异性功率谱的测量结果最支持的模型是宇宙学常数模型[25] [26]。宇宙学常数(即真空能)被认为是暗能量最佳的候选者,其 w=1 。ΛCDM模型作为宇宙标准模型的雏形,可以很好地描述宇宙的膨胀历史。但也面临一些难以解释的理论问题,例如“宇宙巧合”问题[27]和“精细调节”问题[28]

为了解决上述问题科学家做了大量研究,结果表明相互作用真空能模型可影响中微子质量的大小[29],各种宇宙学观测的结合也可提供更严格的中微子质量[30]-[34]。除此之外人们考虑了暗能量的动力学演化性质,动力学演化形式同样被证实影响中微子质量的大小[35]-[40],且中微子质量的不同排序可以影响动

力学暗能量的观测限制[41]-[44]。例如,动力学暗能量最一般的参数化形式是 w( z )= w 0 + w 1 z 1+z (其中w0w1是两个自由参数),即人们常说的Chevallier-Polarski-Linder (简称CPL)参数化[45]-[47]。在CPL模型中,考虑中微子的质量及三代中微子不同的质量排序,宇宙微波背景辐射功率谱数据联合重子声学振荡测得中微子质量为 m v,NH <0.316 eV ( 2σ ) m v,IH <0.332 eV ( 2σ ) m v,DH <0.282 eV ( 2σ ) 。进一步联合Ia型超新星数据时,中微子质量和的拟合结果为中 m v,NH <0.285 eV ( 2σ ) m v,IH <0.304 eV ( 2σ ) m v,DH <0.254 eV ( 2σ ) [48]。然而,当 z1 时,CPL模型中 w( z ) 的演化存在发散的问题,使得CPL参数化暗能量只适用于描绘宇宙过去的演化历史,不能刻画宇宙未来的演化。

为了进一步研究双参数化动力学暗能量对中微子总质量 m v 的影响,我们重点研究了两种特殊的动力学暗能量模型,分别是对数形式参数化(The Logarithm Parametrization,简称Log)和振荡形式参数化(The Oscillating Parametrization,简称Sin)。选择这两个参数化的原因在于:1) 它们可以表现出暗能量动力学演化的良好特性。2) 观测数据表明它们比CPL模型更受支持[49]。3) 它们可以成功地避免CPL参数化中, w( z ) 的演化存在发散的问题( z1 ),有助于探索暗能量在整个演化历程中的动力学性质。关于这两个参数化的更多相关研究,也可参考文献[50]-[54]。本文的第二部分主要介绍了由w0w1参数化的Log模型和Sin模型的基本情况。第三部分简要介绍了限制暗能量模型使用的观测数据和计算方法。第四部分分别讨论、两个观测数据组(宇宙微波背景辐射观测联合重子声学振荡观测,以及它们再联合Ia型超新星观测)对这两个双参数化动力学暗能量模型限制的结果。最后,在第五部分我们给出了一些重要总结。

2. 对数形式参数化和振荡形式参数化的暗能量

在空间平坦的Friedmann-Robertson-Walker宇宙中,Friedmann方程为

E ( z ) 2 ( H( z ) H 0 ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m )f( z ) (1)

H( z ) 表示宇宙的膨胀速率, H 0 为哈勃常数, Ω m 为宇宙当前的暗物质能量密度。函数 f( z ) 定义为

f( z )= ρ de ( z ) ρ de ( 0 ) =exp[ 3 0 z 1+w( z ) 1+ z d z ] (2)

其中 ρ de ( z ) 为暗能量密度。

接下来,我们将介绍由w0w1参数化(简称双参数化)的两种动力学暗能量及其基本情况。Log模型中,暗能量状态方程可以表示为

w( z )= w 0 + w 1 ( In( 2+z ) 1+z In2 ) (3)

很明显, z=0 时, w( z )=w( 0 ) z+ (极早期宇宙)和 z1 (未来宇宙)时,Log参数化可以保证 w( z ) 为有限值,成功避免CPL参数化中,当 z1 时状态方程存在的演化发散问题。相应地,该模型的Friedmann方程可以写为:

E ( z ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m )exp[ 3 0 z 1+ w 0 + w 1 ( In( 2+ z ) 1+ z In2 ) 1+ z d z ] (4)

Sin模型中,暗能量状态方程为

w( z )= w 0 + w 1 ( sin( 1+z ) 1+z sin( 1 ) ) ,(5)

类似地, z=0 时, w( z )=w( 0 ) 。由于 sin( 1 )In2 ,所以Sin参数化与Log参数化这两种形式在低红移处可以描述相同的演化行为。同样,当 z+ z1 时,这两个参数化在极限情况下也大致重合,并且在整个宇宙演化中不会出现 w( z ) 发散的问题。Sin模型的Friedmann方程表示为:

E ( z ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m )exp[ 3 0 z 1+ w 0 + w 1 ( sin( 1+ z ) 1+ z sin( 1 ) ) 1+ z d z ] .(6)

3. 数据和方法

本文将使用宇宙微波背景辐射联合重子声学振荡(即CMB + BAO),宇宙微波背景辐射联合重子声学振荡和Ia型超新星观测(即CMB + BAO + SNIa)两个数据组合限制宇宙学模型。CMB数据主要是指2018年Planck卫星工作组公布的CMB各向异性温度功率谱和极化功率谱数据以及透镜功率谱数据。与之前的CMB数据相比,这些数据进一步降低了CMB在低l处极化功率谱的系统误差,得到了精度更高的极化功率谱数据[55] [56]。BAO观测数据主要包括SDSS-MGS、6dFGS观测中声学尺度距离比 D V / r drag 的测量值( r drag 是重子拖曳时期结束时的共动声视界, D V 是角直径距离) [57]-[59],以及DR12发布的在有效红移 z eff =0.38,0.51 和0.61处的三个BAO测量值[60]。SNIa数据包含了1048个红移范围为 0.01<z<2.3 的超新星样本。这些数据来自Pan-STARRS1中深巡天( 0.03<z<0.65 )的276颗超新星,加上一些低红移和HST样本构建的。Pantheon数据可以提供比JLA更严格的宇宙学参数限制[61]

我们假设了相应宇宙学参数的先验分布范围。一般情况下,为了不影响参数估计的拟合结果,参数的先验分布范围要比后验分布范围宽。对于Log参数化和Sin参数化的动力学暗能量模型,它们都有8个自由参数,即当前重子能量密度 w b = Ω b h 2 ,当前冷暗物质能量密度 w c = Ω c h 2 ,退耦时期声视界与角直径距离比值的100倍 100 θ MC ,再电离光学深度 τ ,原初功率谱幅度的1010倍的对数 In( 10 10 A s ) ,标量谱指数ns,以及模型参数w0w1。这些参数的先验分布如表1所示。除此之外,在Log模型中,其模型参数w0的先验分布为 [ 3.00,1.00 ] w1的先验分布为 [ 4.00,18.00 ] ,在Sin模型中,其模型参数w0的先验分布为 [ 3.00,1.00 ] w1的先验分布为 [ 4.00,9.00 ] 。当 m v 作为宇宙学模型中的自由参数时,我们考虑了中微子质量的三种排序,即正排序、逆排序、简并排序。对应地, m v 的先验分布分别为 [ 0.06,3.00 ] eV、 [ 0.10,3.00 ] eV和 [ 0.00,3.00 ] eV。

为了评估这些动力学暗能量模型与当前观测数据的一致性,本文使用了 χ 2 统计。对于每种观测数据, χ 2 函数被定义为

χ ξ 2 = ( ξ obs ξ th ) 2 σ ξ 2 ,(7)

Table 1. Priors on the free parameters for the models of Log and Sin

1. Log模型和Sin模型自由参数的先验分布

参数

先验分布

w b

[ 0.005,0.100 ]

w c

[ 0.001,0.990 ]

100 θ MC

[ 0.5,10.0 ]

τ

[ 0.01,0.80 ]

In( 10 10 A s )

[ 2,4 ]

n s

[ 0.8,1.2 ]

其中, ξ th ξ obs σ ξ 分别表示参数的理论预测值、实验观测值和标准偏差。对于独立的不同观测实验而言,总的 χ 2 值可以写为

χ 2 ( p )= i χ ξ i 2 ( p ) ,(8)

通常,比较具有相同参数个数的不同模型时, χ 2 统计[62] [63]能够准确地比较出它们与观测数据的符合程度。得到的 χ 2 值越小意味着该宇宙学模型越被观测所支持。本文的限制结果主要是使用集有camb Boltzmann代码的CosmoMC程序包[64]进行计算。通过修改和运行该代码包,我们可以得到参数的后验分布结果。

4. 结果与讨论

Table 2. In the case of three hierarchy of neutrino masses, the logarithm parametrization fitting results under the constraint of CMB + BAO data and CMB + BAO + SNIa data

2. 在中微子质量三种排序情况下,Log参数化在CMB + BAO数据和CMB + BAO + SNIa数据限制下的参数拟合结果

参数

CMB + BAO

CMB + BAO + SNIa

NH

IH

DH

NH

IH

DH

w 0

0. 55 0.28 +0.25

0. 53 0.28 +0.26

0. 590 0.280 +0.240

0. 946 0.080 +0.071

0. 938 0.081 +0.073

0. 955 0.079 +0.069

w 1

6 .10 4.10 +2.50

6 .70 4.10 +2.80

5 .40 4.00 +2.40

1.90 1.70 +1.00

2.20 1.70 +1.10

1 .52 1.63 +0.95

m v [ eV ]

<0.342

0.362

0.327

0.301

0.317

0.282

Ω m

0.34 8 0.029 +0.025

0.351 0.029 +0.026

0.3 45 0.028 +0.025

0.3094±0.0082

0.3106 0.0082 +0.0083

0.3 080 0.0089 +0.0081

H 0 [ km/s / Mpc ]

64. 6 2.6 +2.3

64. 4 2.7 +2.3

64. 8 2.5 +2.3

68.31±0.82

68.27 0.82 +0.83

68. 33 0.81 +0.82

σ 8

0.779±0.024

0.775±0.024

0.784±0.025

0. 812 0.013 +0.015

0. 809 0.013 +0.015

0. 817 0.013 +0.016

χ min 2

2782.514

2786.672

2784.190

3824.100

3823.180

3823.148

我们考虑了三代中微子质量的正排序、逆排序和简并排序三种情况,表2表3分别是Log模型和Sin模型在CMB + BAO数据组和CMB + BAO + SNIa数据组限制下的拟合结果。我们得到Log模型在CMB + BAO数据组限制下, m v,NH <0.342 eV ( 2σ ) m v,IH <0.362 eV ( 2σ ) m v,DH <0.327 eV ( 2σ ) ,CMB + BAO + SNIa数据组限制下, m v,NH <0.301 eV ( 2σ ) m v,IH <0.317 eV ( 2σ ) m v,DH <0.282 eV ( 2σ ) (表2)。结果表明,在同一形式参数化暗能量中,CMB + BAO + SNIa数据比CMB + BAO数据对模型参数限制的更好,SNIa观测数据具有压低中微子质量拟合值上限的作用。类似地,Sin参数化在两种数据组的限制下,我们得到相似的结果(表3)。与CPL模型中得到的中微子质量上限值(CMB + BAO数据组限制下, m v,NH <0.316 eV ( 2σ ) m v,IH <0.332 eV ( 2σ ) m v,DH <0.282 eV ( 2σ ) ;CMB + BAO + SNIa数据组限制下, m v,NH <0.285 eV ( 2σ ) m v,IH <0.304 eV ( 2σ ) m v,DH <0.254 eV ( 2σ ) )相比, Log模型中可得到相近的中微子质量上限值,但Sin模型中得到的中微子质量上限值更大。此外,这两种双参数化的动力学暗能量中,正排序下中微子质量拟合值的上限都比逆排序下得到的结果更小。

Table 3. In the case of three hierarchy of neutrino masses, the oscillating parametrization fitting results under the constraint of CMB + BAO data and CMB + BAO + SNIa data

3. 在中微子质量三种排序情况下,Sin参数化在CMB + BAO数据和CMB + BAO + SNIa数据限制下的参数拟合结果

参数

CMB + BAO

CMB + BAO + SNIa

NH

IH

DH

NH

IH

DH

w 0

0.63 0.24 +0.20

0.6 2 0.25 +0.21

0.6 50 0.230 +0.200

0. 956 0.070 +0.063

0. 952 0.066 +0.065

0.962±0.063

w 1

2.30 1.61 +0.85

2.47 1.66 +0.93

1 .98 1.52 +0.80

0.80 0.70 +0.37

0.91 0.69 +0.41

0. 66 0.69 +0.34

m v [ eV ]

0.368

0.382

0.342

0.327

0.336

0.311

Ω m

0.346 0.027 +0.023

0.347 0.027 +0.024

0.34 2 0.026 +0.023

0.3097 0.0090 +0.0083

0.3106 0.0083 +0.0082

0.3081±0.0084

H 0 [ km/s / Mpc ]

64.8 2.4 +2.2

64.8 2.5 +2.2

65 .0 2.4 +2.2

68.33 0.84 +0.83

68.32 0.83 +0.84

68.37±0.82

σ 8

0.781±0.023

0.778±0.023

0.785±0.024

0. 812 0.013 +0.016

0. 809 0.013 +0.015

0. 816 0.014 +0.016

χ min 2

2788.970

2784.166

2783.698

3822.408

3824.456

3821.800

CMB + BAO数据组限制下,在 Log+ m v 模型中,我们得到中微子质量的三种排序下 χ min 2 值分别为 χ min,NH 2 =2782.514 χ min,IH 2 =2786.672 χ min,DH 2 =2784.190 (见表2),即正排序时的 χ min 2 值最小,逆排序时的 χ min 2 最大,且逆排序和正排序间的 χ min 2 差为 Δ χ min 2 = χ min,IH 2 χ min,NH 2 =4.158 。也就是说,在 Log+ m v 模型中,中微子质量的正排序比逆排序更被CMB + BAO数据所支持。在 Sin+ m v 模型中,我们得到中微子质量的三种排序下 χ min 2 值分别为 χ min,NH 2 =2784.970 χ min,IH 2 =2784.166 χ min,DH 2 =2783.698 (见表3),即简并排序时的 χ min 2 值最小,正排序时的 χ min 2 最大,但 Δ χ min 2 都小于2,不足于甄别出CMB + BAO数据组更支持中微子质量的哪种排序。

CMB + BAO + SNIa数据组限制下,在 Log+ m v 模型中,我们得到中微子质量的三种排序下 χ min 2 值分别为 χ min,NH 2 =3824.100 χ min,NH 2 =3824.100 χ min,DH 2 =3823.148 (见表2),即简并排序时的 χ min 2 值最小,正排序时的 χ min 2 最大,但 Δ χ min 2 都小于2,不足于甄别出CMB + BAO + SNIa数据组更支持中微子质量的哪种排序。在 Sin+ m v 模型中,我们得到中微子质量的三种排序下 χ min 2 值分别为 χ min,NH 2 =3822.408 χ min,IH 2 =3824.456 χ min,DH 2 =3821.800 (见表3),即简并排序时的 χ min 2 值最小,逆排序时的 χ min 2 最大,且逆排序和正排序间的 χ min 2 差为 Δ χ min 2 = χ min,IH 2 χ min,NH 2 =2.048 ,即在 Sin+ m v 模型中,中微子质量的正排序比逆排序更被CMB + BAO + SNIa数据所支持。

5. 总结

我们使用了当前主流的宇宙学观测数据,即CMB + BAO和CMB + BAO + SNIa两个数据组合,限制考虑中微子质量排序的对数形式参数化暗能量和振荡形式参数化暗能量,分析双参数化动力学暗能量对中微子质量的影响。我们发现不同的中微子质量排序会影响中微子质量和的拟合结果。使用CMB + BAO + SNIa数据限制暗能量模型时,暗能量模型中包含中微子质量和在内的宇宙学参数都得到了进一步的限制。重要的是,我们发现不同的中微子质量排序下对数形式参数化暗能量和振荡形式参数化暗能量中中微子质量和的值都比CPL模型中的值大,即对数形式参数化暗能量和振荡形式参数化暗能量可以提高中微子质量总和的拟合值上限。因此,我们的工作与动力学暗能量可改变中微子质量和拟合值的结论是一致的。

基金项目

本文获得国家自然科学基金(项目号:12103038)资助。

参考文献

[1] Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., et al. (2001) Solar8 B and Hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data. Physical Review Letters, 86, 5651-5655.
https://doi.org/10.1103/physrevlett.86.5651
[2] Ahmad, Q.R., Allen, R.C., Andersen, T.C., D.Anglin, J., Barton, J.C., Beier, E.W., et al. (2002) Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89, Article 011301.
https://doi.org/10.1103/physrevlett.89.011301
[3] Gribov, V. and Pontecorvo, B. (1969) Neutrino Astronomy and Lepton Charge. Physics Letters B, 28, 493-496.
https://doi.org/10.1016/0370-2693(69)90525-5
[4] 肖雨奇, 刘泽坤, 陈绍龙. 中微子和暗物质物理的关联研究[J]. 中国科学: 物理学、力学、天文学, 2023, 53(9): 49-67.
[5] Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T. and Zhou, A. (2020) The Fate of Hints: Updated Global Analysis of Three-Flavor Neutrino Oscillations. Journal of High Energy Physics, 2020, Article No. 178.
https://doi.org/10.1007/jhep09(2020)178
[6] Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., et al. (2022) Direct Neutrino-Mass Measurement with Sub-Electronvolt Sensitivity. Nature Physics, 18, 160-166.
https://doi.org/10.1038/s41567-021-01463-1
[7] Alam, S., Aubert, M., Avila, S., Balland, C., Bautista, J.E., Bershady, M.A., et al. (2021) Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from Two Decades of Spectroscopic Surveys at the Apache Point Observatory. Physical Review D, 103, Article 083533.
https://doi.org/10.1103/physrevd.103.083533
[8] Palanque-Delabrouille, N., Yèche, C., Schöneberg, N., Lesgourgues, J., Walther, M., Chabanier, S., et al. (2020) Hints, Neutrino Bounds, and WDM Constraints from SDSS DR14 Lyman-Α and Planck Full-Survey Data. Journal of Cosmology and Astroparticle Physics, 2020, Article 38.
https://doi.org/10.1088/1475-7516/2020/04/038
[9] Abbott, T.M.C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., et al. (2022) Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Physical Review D, 105, Article 023520.
https://doi.org/10.1103/physrevd.105.023520
[10] Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19.
https://doi.org/10.1088/0067-0049/208/2/19
[11] Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60.
https://doi.org/10.1088/1475-7516/2013/10/060
[12] Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 Deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74.
https://doi.org/10.1088/0004-637X/782/2/74
[13] Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[14] Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and Λ from 42 High‐Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[15] Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432.
https://doi.org/10.1146/annurev.astro.46.060407.145243
[16] Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255.
https://doi.org/10.1016/j.physrep.2013.05.001
[17] Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585.
https://doi.org/10.1103/physrevlett.80.1582
[18] Sean, M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less Than −1? Physical Review D, 68, Article 023509.
https://doi.org/10.1103/PhysRevD.68.023509
[19] Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182.
https://doi.org/10.1016/j.physletb.2005.01.017
[20] Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194.
https://doi.org/10.1086/377226
[21] Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27.
https://doi.org/10.1086/377253
[22] Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article 103501.
https://doi.org/10.1103/physrevd.69.103501
[23] Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512.
https://doi.org/10.1086/421365
[24] Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163.
https://doi.org/10.3390/universe7060163
[25] Alves, J., Bertout, C., Combes, F., Ferrara, A., Forveille, T., Guillot, T., et al. (2014) Planck 2013 Results. Astronomy & Astrophysics, 571, Article E1.
https://doi.org/10.1051/0004-6361/201425195
[26] Alves, J., Combes, F., Ferrara, A., Forveille, T. and Shore, S. (2016) Planck 2015 Results. Astronomy & Astrophysics, 594, Article E1.
https://doi.org/10.1051/0004-6361/201629543
[27] Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term. International Journal of Modern Physics D, 9, 373-443.
https://doi.org/10.1142/s0218271800000542
[28] Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059.
https://doi.org/10.48550/arXiv.astro-ph/0510059
[29] Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article 095103.
https://doi.org/10.1088/1674-1137/42/9/095103
[30] Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49.
https://doi.org/10.1088/1475-7516/2016/01/049
[31] Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75.
https://doi.org/10.1016/j.physletb.2015.11.022
[32] Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ −1 Are Tighter than Those Obtained in ΛCDM. Physical Review D, 98, Article 083501.
https://doi.org/10.1103/physrevd.98.083501
[33] Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. The Astrophysical Journal, 876, Article 85.
https://doi.org/10.3847/1538-4357/ab1422
[34] Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93.
https://doi.org/10.1016/j.physletb.2018.05.027
[35] Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724.
https://doi.org/10.1093/mnras/stx978
[36] Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article 083011.
https://doi.org/10.1103/physrevd.93.083011
[37] Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164.
https://doi.org/10.1016/j.physletb.2012.06.030
[38] Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article No. 2954.
https://doi.org/10.1140/epjc/s10052-014-2954-8
[39] Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38.
https://doi.org/10.1088/1475-7516/2015/04/038
[40] Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article 083519.
https://doi.org/10.1103/physrevd.94.083519
[41] Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37.
https://doi.org/10.1088/1475-7516/2020/07/037
[42] Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article 081301.
https://doi.org/10.1103/physrevlett.123.081301
[43] Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article 103522.
https://doi.org/10.1103/physrevd.95.103522
[44] Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489.
https://doi.org/10.1140/epjc/s10052-016-4334-z
[45] Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223.
https://doi.org/10.1142/s0218271801000822
[46] Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article 091301.
https://doi.org/10.1103/physrevlett.90.091301
[47] Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15.
https://doi.org/10.1016/s0370-2693(01)00072-7
[48] Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061.
https://doi.org/10.4236/jhepgc.2023.94076
[49] Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33.
https://doi.org/10.1088/1475-7516/2013/02/033
[50] Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article No. 274.
https://doi.org/10.1140/epjc/s10052-020-7832-y
[51] Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45.
https://doi.org/10.1088/1475-7516/2020/07/045
[52] Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775.
https://doi.org/10.1016/j.dark.2021.100775
[53] Rezaei, M., Peracaula, J.S. and Malekjani, M. (2021) Cosmographic Approach to Running Vacuum Dark Energy Models: New Constraints Using BAOs and Hubble Diagrams at Higher Redshifts. Monthly Notices of the Royal Astronomical Society, 509, 2593-2608.
https://doi.org/10.1093/mnras/stab3117
[54] Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article 137244.
https://doi.org/10.1016/j.physletb.2022.137244
[55] Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. Astronomy & Astrophysics, 641, Article No. A3.
https://doi.org/10.1051/0004-6361/201832909
[56] Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6.
https://doi.org/10.1051/0004-6361/201833910
[57] Dodelson, S. (2003) Modern Cosmology. Academic Press.
[58] Perković, D. and Štefančić, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629.
https://doi.org/10.1140/epjc/s10052-020-8199-9
[59] Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792.
https://doi.org/10.1140/epjp/s13360-020-00769-y
[60] Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775.
https://doi.org/10.1016/j.dark.2021.100775
[61] Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article 100812.
https://doi.org/10.1016/j.dark.2021.100812
[62] Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765.
https://doi.org/10.1140/epjc/s10052-022-10653-x
[63] Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article 063509.
https://doi.org/10.1103/physrevd.107.063509
[64] Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article 103503.
https://doi.org/10.1103/physrevd.72.103503

Baidu
map