[1]
|
Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., et al. (2001) Solar8 B and Hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data. Physical Review Letters, 86, 5651-5655. https://doi.org/10.1103/physrevlett.86.5651
|
[2]
|
Ahmad, Q.R., Allen, R.C., Andersen, T.C., D.Anglin, J., Barton, J.C., Beier, E.W., et al. (2002) Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89, Article 011301. https://doi.org/10.1103/physrevlett.89.011301
|
[3]
|
Gribov, V. and Pontecorvo, B. (1969) Neutrino Astronomy and Lepton Charge. Physics Letters B, 28, 493-496. https://doi.org/10.1016/0370-2693(69)90525-5
|
[4]
|
肖雨奇, 刘泽坤, 陈绍龙. 中微子和暗物质物理的关联研究[J]. 中国科学: 物理学、力学、天文学, 2023, 53(9): 49-67.
|
[5]
|
Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T. and Zhou, A. (2020) The Fate of Hints: Updated Global Analysis of Three-Flavor Neutrino Oscillations. Journal of High Energy Physics, 2020, Article No. 178. https://doi.org/10.1007/jhep09(2020)178
|
[6]
|
Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B., et al. (2022) Direct Neutrino-Mass Measurement with Sub-Electronvolt Sensitivity. Nature Physics, 18, 160-166. https://doi.org/10.1038/s41567-021-01463-1
|
[7]
|
Alam, S., Aubert, M., Avila, S., Balland, C., Bautista, J.E., Bershady, M.A., et al. (2021) Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from Two Decades of Spectroscopic Surveys at the Apache Point Observatory. Physical Review D, 103, Article 083533. https://doi.org/10.1103/physrevd.103.083533
|
[8]
|
Palanque-Delabrouille, N., Yèche, C., Schöneberg, N., Lesgourgues, J., Walther, M., Chabanier, S., et al. (2020) Hints, Neutrino Bounds, and WDM Constraints from SDSS DR14 Lyman-Α and Planck Full-Survey Data. Journal of Cosmology and Astroparticle Physics, 2020, Article 38. https://doi.org/10.1088/1475-7516/2020/04/038
|
[9]
|
Abbott, T.M.C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., et al. (2022) Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Physical Review D, 105, Article 023520. https://doi.org/10.1103/physrevd.105.023520
|
[10]
|
Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19. https://doi.org/10.1088/0067-0049/208/2/19
|
[11]
|
Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60. https://doi.org/10.1088/1475-7516/2013/10/060
|
[12]
|
Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 Deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74. https://doi.org/10.1088/0004-637X/782/2/74
|
[13]
|
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
|
[14]
|
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and Λ from 42 High‐Redshift Supernovae. The Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221
|
[15]
|
Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432. https://doi.org/10.1146/annurev.astro.46.060407.145243
|
[16]
|
Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255. https://doi.org/10.1016/j.physrep.2013.05.001
|
[17]
|
Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585. https://doi.org/10.1103/physrevlett.80.1582
|
[18]
|
Sean, M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less Than −1? Physical Review D, 68, Article 023509. https://doi.org/10.1103/PhysRevD.68.023509
|
[19]
|
Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182. https://doi.org/10.1016/j.physletb.2005.01.017
|
[20]
|
Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194. https://doi.org/10.1086/377226
|
[21]
|
Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First‐Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27. https://doi.org/10.1086/377253
|
[22]
|
Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article 103501. https://doi.org/10.1103/physrevd.69.103501
|
[23]
|
Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512. https://doi.org/10.1086/421365
|
[24]
|
Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163. https://doi.org/10.3390/universe7060163
|
[25]
|
Alves, J., Bertout, C., Combes, F., Ferrara, A., Forveille, T., Guillot, T., et al. (2014) Planck 2013 Results. Astronomy & Astrophysics, 571, Article E1. https://doi.org/10.1051/0004-6361/201425195
|
[26]
|
Alves, J., Combes, F., Ferrara, A., Forveille, T. and Shore, S. (2016) Planck 2015 Results. Astronomy & Astrophysics, 594, Article E1. https://doi.org/10.1051/0004-6361/201629543
|
[27]
|
Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term. International Journal of Modern Physics D, 9, 373-443. https://doi.org/10.1142/s0218271800000542
|
[28]
|
Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059. https://doi.org/10.48550/arXiv.astro-ph/0510059
|
[29]
|
Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article 095103. https://doi.org/10.1088/1674-1137/42/9/095103
|
[30]
|
Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49. https://doi.org/10.1088/1475-7516/2016/01/049
|
[31]
|
Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75. https://doi.org/10.1016/j.physletb.2015.11.022
|
[32]
|
Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ −1 Are Tighter than Those Obtained in ΛCDM. Physical Review D, 98, Article 083501. https://doi.org/10.1103/physrevd.98.083501
|
[33]
|
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. The Astrophysical Journal, 876, Article 85. https://doi.org/10.3847/1538-4357/ab1422
|
[34]
|
Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93. https://doi.org/10.1016/j.physletb.2018.05.027
|
[35]
|
Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724. https://doi.org/10.1093/mnras/stx978
|
[36]
|
Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article 083011. https://doi.org/10.1103/physrevd.93.083011
|
[37]
|
Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164. https://doi.org/10.1016/j.physletb.2012.06.030
|
[38]
|
Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article No. 2954. https://doi.org/10.1140/epjc/s10052-014-2954-8
|
[39]
|
Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38. https://doi.org/10.1088/1475-7516/2015/04/038
|
[40]
|
Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article 083519. https://doi.org/10.1103/physrevd.94.083519
|
[41]
|
Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37. https://doi.org/10.1088/1475-7516/2020/07/037
|
[42]
|
Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article 081301. https://doi.org/10.1103/physrevlett.123.081301
|
[43]
|
Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article 103522. https://doi.org/10.1103/physrevd.95.103522
|
[44]
|
Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489. https://doi.org/10.1140/epjc/s10052-016-4334-z
|
[45]
|
Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223. https://doi.org/10.1142/s0218271801000822
|
[46]
|
Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article 091301. https://doi.org/10.1103/physrevlett.90.091301
|
[47]
|
Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15. https://doi.org/10.1016/s0370-2693(01)00072-7
|
[48]
|
Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061. https://doi.org/10.4236/jhepgc.2023.94076
|
[49]
|
Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33. https://doi.org/10.1088/1475-7516/2013/02/033
|
[50]
|
Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article No. 274. https://doi.org/10.1140/epjc/s10052-020-7832-y
|
[51]
|
Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45. https://doi.org/10.1088/1475-7516/2020/07/045
|
[52]
|
Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775. https://doi.org/10.1016/j.dark.2021.100775
|
[53]
|
Rezaei, M., Peracaula, J.S. and Malekjani, M. (2021) Cosmographic Approach to Running Vacuum Dark Energy Models: New Constraints Using BAOs and Hubble Diagrams at Higher Redshifts. Monthly Notices of the Royal Astronomical Society, 509, 2593-2608. https://doi.org/10.1093/mnras/stab3117
|
[54]
|
Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article 137244. https://doi.org/10.1016/j.physletb.2022.137244
|
[55]
|
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. Astronomy & Astrophysics, 641, Article No. A3. https://doi.org/10.1051/0004-6361/201832909
|
[56]
|
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
|
[57]
|
Dodelson, S. (2003) Modern Cosmology. Academic Press.
|
[58]
|
Perković, D. and Štefančić, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629. https://doi.org/10.1140/epjc/s10052-020-8199-9
|
[59]
|
Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792. https://doi.org/10.1140/epjp/s13360-020-00769-y
|
[60]
|
Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article 100775. https://doi.org/10.1016/j.dark.2021.100775
|
[61]
|
Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article 100812. https://doi.org/10.1016/j.dark.2021.100812
|
[62]
|
Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765. https://doi.org/10.1140/epjc/s10052-022-10653-x
|
[63]
|
Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article 063509. https://doi.org/10.1103/physrevd.107.063509
|
[64]
|
Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article 103503. https://doi.org/10.1103/physrevd.72.103503
|