[1] |
Perlmutter, S., et al. (1997) Cosmology from Type Ia Supernovae. Bulletin of the American Astronomical Society, 29, 1351. |
[2] |
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499 |
[3] |
Bahcall, N.A., Ostriker, J.P., Perlmutter, S. and Steinhardt, P.J. (1999) The Cosmic Triangle: Revealing the State of the Universe. Science, 284, 1481-1488. https://doi.org/10.1126/science.284.5419.1481 |
[4] |
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221 |
[5] |
Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194. https://doi.org/10.1086/377226 |
[6] |
Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27. https://doi.org/10.1086/377253 |
[7] |
Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article ID: 103501. https://doi.org/10.1103/physrevd.69.103501 |
[8] |
Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512. https://doi.org/10.1086/421365 |
[9] |
Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163. https://doi.org/10.3390/universe7060163 |
[10] |
Hart, L. and Chluba, J. (2022) Using the Cosmological Recombination Radiation to Probe Early Dark Energy and Fundamental Constant Variations. Monthly Notices of the Royal Astronomical Society, 519, 3664-3680. https://doi.org/10.1093/mnras/stac3697 |
[11] |
Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. Physics Reports, 380, 235-320. https://doi.org/10.1016/s0370-1573(03)00120-0 |
[12] |
Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606. https://doi.org/10.1103/revmodphys.75.559 |
[13] |
Copeland, E.J., Sami, M. and Tsujikawa, S. (2006) Dynamics of Dark Energy. International Journal of Modern Physics D, 15, 1753-1935. https://doi.org/10.1142/s021827180600942x |
[14] |
Sahni, V. and Starobinsky, A. (2006) Reconstructing Dark Energy. International Journal of Modern Physics D, 15, 2105-2132. https://doi.org/10.1142/s0218271806009704 |
[15] |
Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432. https://doi.org/10.1146/annurev.astro.46.060407.145243 |
[16] |
Li, M., Li, X., Wang, S. and Wang, Y. (2011) Dark Energy. Communications in Theoretical Physics, 56, 525-604. https://doi.org/10.1088/0253-6102/56/3/24 |
[17] |
Bamba, K., Capozziello, S., Nojiri, S. and Odintsov, S.D. (2012) Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophysics and Space Science, 342, 155-228. https://doi.org/10.1007/s10509-012-1181-8 |
[18] |
Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255. https://doi.org/10.1016/j.physrep.2013.05.001 |
[19] |
Mortonson, M.J., Weinberg, D.H. and White, M. (2017) Dark Energy: A Short Review. arXiv: 1401.0046. |
[20] |
张鑫. 暗能量与宇宙加速膨胀之谜[J]. 科学, 2017, 69(1): 57-60. |
[21] |
柴铮. 暗物质与暗能量研究进展[J]. 科技视界, 2016(26): 345, 350. |
[22] |
Ade, P.A.R., et al. (2014) Planck 2013 Results. XVI. Cosmological Parameters. arXiv: 1303.5076. |
[23] |
Ade, P.A.R., et al. (2016) Planck 2015 Results. XIII. Cosmological Parameters. arXiv: 1502.01589. |
[24] |
Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585. https://doi.org/10.1103/physrevlett.80.1582 |
[25] |
Sean. M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less than—1? Physical Review D, 68, Article ID: 023509. |
[26] |
Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182. https://doi.org/10.1016/j.physletb.2005.01.017 |
[27] |
Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological λ-Term. International Journal of Modern Physics D, 09, 373-443. https://doi.org/10.1142/s0218271800000542 |
[28] |
Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059. |
[29] |
Aghanim, N., et al. (2018) Planck 2018 results. VI. Cosmological Parameters. arXiv: 1807.06209. |
[30] |
Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. The Astrophysical Journal Letters, 908, L6. https://doi.org/10.3847/2041-8213/abdbaf |
[31] |
Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations. Physical Review Letters, 112, Article ID: 051303. https://doi.org/10.1103/physrevlett.112.051303 |
[32] |
Betoule, M., Kessler, R., Guy, J., Mosher, J., Hardin, D., Biswas, R., et al. (2014) Improved Cosmological Constraints from a Joint Analysis of the SDSS-II and SNLS Supernova Samples. Astronomy & Astrophysics, 568, A22. https://doi.org/10.1051/0004-6361/201423413 |
[33] |
Bernal, J.L., Verde, L. and Riess, A.G. (2016) The Trouble with H0. arXiv: 1607.05617. https://doi.org/10.1088/1475-7516/2016/10/019 |
[34] |
Guo, R., Li, Y., Zhang, J. and Zhang, X. (2017) Weighing Neutrinos in the Scenario of Vacuum Energy Interacting with Cold Dark Matter: Application of the Parameterized Post-Friedmann Approach. arXiv: 1702.04189. https://doi.org/10.1088/1475-7516/2017/05/040 |
[35] |
Lesgourgues, J. and Pastor, S. (2006) Massive Neutrinos and Cosmology. Physics Reports, 429, 307-379. https://doi.org/10.1016/j.physrep.2006.04.001 |
[36] |
Olive, K.A. (2014) Review of Particle Physics. Chinese Physics C, 38, Article ID: 090001. https://doi.org/10.1088/1674-1137/38/9/090001 |
[37] |
Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19. https://doi.org/10.1088/0067-0049/208/2/19 |
[38] |
Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60. https://doi.org/10.1088/1475-7516/2013/10/060 |
[39] |
Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74. |
[40] |
Ade, P.A.R., et al. (2014) Planck 2013 results. XXIV. Constraints on Primordial on Gaussianity. Astronomy & Astrophysics, 571, A24. |
[41] |
Abazajian, K.N., Arnold, A., Austermann, J., et al. (2015) Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure. Astroparticle Physics, 63, 66-80. https://doi.org/10.1016/j.astropartphys.2014.05.014 |
[42] |
Aghanim, N., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysic, 641, A6. |
[43] |
Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724. https://doi.org/10.1093/mnras/stx978 |
[44] |
Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article ID: 083011. https://doi.org/10.1103/physrevd.93.083011 |
[45] |
Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article ID: 095103. https://doi.org/10.1088/1674-1137/42/9/095103 |
[46] |
Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37. https://doi.org/10.1088/1475-7516/2020/07/037 |
[47] |
Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164. https://doi.org/10.1016/j.physletb.2012.06.030 |
[48] |
Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33. https://doi.org/10.1088/1475-7516/2013/02/033 |
[49] |
Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article 2954. https://doi.org/10.1140/epjc/s10052-014-2954-8 |
[50] |
Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38. https://doi.org/10.1088/1475-7516/2015/04/038 |
[51] |
Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49. https://doi.org/10.1088/1475-7516/2016/01/049 |
[52] |
Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75. https://doi.org/10.1016/j.physletb.2015.11.022 |
[53] |
Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ −1 Are Tighter than Those Obtained in λCDM. Physical Review D, 98, Article ID: 083501. https://doi.org/10.1103/physrevd.98.083501 |
[54] |
Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article ID: 081301. https://doi.org/10.1103/physrevlett.123.081301 |
[55] |
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond λCDM. The Astrophysical Journal, 876, Article 85. https://doi.org/10.3847/1538-4357/ab1422 |
[56] |
Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93. https://doi.org/10.1016/j.physletb.2018.05.027 |
[57] |
Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article ID: 083519. https://doi.org/10.1103/physrevd.94.083519 |
[58] |
Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article ID: 103522. https://doi.org/10.1103/physrevd.95.103522 |
[59] |
Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489. https://doi.org/10.1140/epjc/s10052-016-4334-z |
[60] |
Zhang, M., Zhang, J. and Zhang, X. (2020) Impacts of Dark Energy on Constraining Neutrino Mass after Planck 2018. Communications in Theoretical Physics, 72, Article ID: 125402. https://doi.org/10.1088/1572-9494/abbb84 |
[61] |
Li, M. (2004) A Model of Holographic Dark Energy. Physics Letters B, 603, 1-5. https://doi.org/10.1016/j.physletb.2004.10.014 |
[62] |
Huang, Q. and Li, M. (2004) The Holographic Dark Energy in a Non-Flat Universe. Journal of Cosmology and Astroparticle Physics, 2004, Article 13. https://doi.org/10.1088/1475-7516/2004/08/013 |
[63] |
Zhang, J., Zhao, M., Cui, J. and Zhang, X. (2014) Revisiting the Holographic Dark Energy in a Non-Flat Universe: Alternative Model and Cosmological Parameter Constraints. The European Physical Journal C, 74, Article 3178. https://doi.org/10.1140/epjc/s10052-014-3178-7 |
[64] |
Wang, S., Wang, Y. and Li, M. (2017) Holographic Dark Energy. Physics Reports, 696, 1-57. https://doi.org/10.1016/j.physrep.2017.06.003 |
[65] |
Wang, S., Geng, J., Hu, Y. and Zhang, X. (2014) Revisit of Constraints on Holographic Dark Energy: SNLS3 Dataset with the Effects of Time-Varying Β and Different Light-Curve Fitters. Science China Physics, Mechanics & Astronomy, 58, 1-11. https://doi.org/10.1007/s11433-014-5628-5 |
[66] |
Cui, J., Xu, Y., Zhang, J. and Zhang, X. (2015) Strong Gravitational Lensing Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 58, Article ID: 110402. https://doi.org/10.1007/s11433-015-5734-z |
[67] |
He, D., Zhang, J. and Zhang, X. (2017) Redshift Drift Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 60, Article ID: 039511. https://doi.org/10.1007/s11433-016-0472-1 |
[68] |
Xu, Y. and Zhang, X. (2016) Comparison of Dark Energy Models After Planck 2015. The European Physical Journal C, 76, Article No. 588. https://doi.org/10.1140/epjc/s10052-016-4446-5 |
[69] |
Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223. https://doi.org/10.1142/s0218271801000822 |
[70] |
Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article ID: 091301. https://doi.org/10.1103/physrevlett.90.091301 |
[71] |
Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15. https://doi.org/10.1016/s0370-2693(01)00072-7 |
[72] |
Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061. https://doi.org/10.4236/jhepgc.2023.94076 |
[73] |
Barboza, E.M. and Alcaniz, J.S. (2008) A Parametric Model for Dark Energy. Physics Letters B, 666, 415-419. https://doi.org/10.1016/j.physletb.2008.08.012 |
[74] |
Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45. https://doi.org/10.1088/1475-7516/2020/07/045 |
[75] |
Du, M., Yang, W., Xu, L., Pan, S. and Mota, D.F. (2019) Future Constraints on Dynamical Dark-Energy Using Gravitational-Wave Standard Sirens. Physical Review D, 100, Article ID: 043535. https://doi.org/10.1103/physrevd.100.043535 |
[76] |
Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article 274. https://doi.org/10.1140/epjc/s10052-020-7832-y |
[77] |
Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) WMAP Constraints on Low Redshift Evolution of Dark Energy. Monthly Notices of the Royal Astronomical Society: Letters, 356, L11-L16. https://doi.org/10.1111/j.1745-3933.2005.08577.x |
[78] |
Denitsa, S. (2022) DE Models with Combined H0⋅rd from BAO and CMB Dataset and Friends. Universe, 8, Article No. 631. https://doi.org/10.3390/universe8120631 |
[79] |
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. arXiv:1807.06207. |
[80] |
Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. arXiv: 1807.06209. |
[81] |
Gaztañaga, E., Cabré, A. and Hui, L. (2009) Clustering of Luminous Red Galaxies—IV. Baryon Acoustic Peak in the Line-Of-Sight Direction and a Direct Measurement of H(z). Monthly Notices of the Royal Astronomical Society, 399, 1663-1680. https://doi.org/10.1111/j.1365-2966.2009.15405.x |
[82] |
Perković, D. and Štefančić, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629. https://doi.org/10.1140/epjc/s10052-020-8199-9 |
[83] |
Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792. https://doi.org/10.1140/epjp/s13360-020-00769-y |
[84] |
Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article ID: 100775. https://doi.org/10.1016/j.dark.2021.100775 |
[85] |
Scolnic, D.M., Jones, D.O., Rest, A., Pan, Y.C., Chornock, R., Foley, R.J., et al. (2018) The Complete Light-Curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. The Astrophysical Journal, 859, Article 101. https://doi.org/10.3847/1538-4357/aab9bb |
[86] |
Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article ID: 100812. https://doi.org/10.1016/j.dark.2021.100812 |
[87] |
Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765. https://doi.org/10.1140/epjc/s10052-022-10653-x |
[88] |
Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article ID: 137244. https://doi.org/10.1016/j.physletb.2022.137244 |
[89] |
Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article ID: 063509. https://doi.org/10.1103/physrevd.107.063509 |
[90] |
Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article ID: 103503. https://doi.org/10.1103/physrevd.72.103503 |