[1] |
Ang, B.W. and Zhang, F.Q. (2000) A Survey of Index Decomposition Analysis in Energy and Environmental Studies.Energy, 25, 1149-1176. https://doi.org/10.1016/s0360-5442(00)00039-6 |
[2] |
Kermani, M.B. and Morshed, A. (2003) Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium.CORROSION, 59, 659-683. https://doi.org/10.5006/1.3277596 |
[3] |
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C.B., Frieler, K., Knutti, R.,et al. (2009) Greenhouse-Gas Emission Targets for Limiting Global Warming to 2℃.Nature, 458, 1158-1162. https://doi.org/10.1038/nature08017 |
[4] |
Fearnside, P.M. (2000) Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, De-Composition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation.Climatic Change, 46, 115-158. https://doi.org/10.1023/A:1005569915357 |
[5] |
Sabonnadiere, J.-C. (2010) Renewable Energy Technologies. John Wiley & Sons. |
[6] |
Foxon, T.J., Gross, R., Chase, A., Howes, J., Arnall, A. and Anderson, D. (2005) UK Innovation Systems for New and Renewable Energy Technologies: Drivers, Barriers and Systems Failures.Energy Policy, 33, 2123-2137. https://doi.org/10.1016/j.enpol.2004.04.011 |
[7] |
Johansson, T.B. (1993) Renewable Energy: Sources for Fuels and Electricity. Island Press. |
[8] |
Jacobson, M.Z. and Delucchi, M.A. (2011) Providing All Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials.Energy Policy, 39, 1154-1169. https://doi.org/10.1016/j.enpol.2010.11.040 |
[9] |
Twidell, J. and Weir, T. (2015) Renewable Energy Resources. Routledge. |
[10] |
Bozell, J.J. and Petersen, G.R. (2010) Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited.Green Chemistry, 12, 539-554. https://doi.org/10.1039/b922014c |
[11] |
Zhou, C., Xia, X., Lin, C., Tong, D. and Beltramini, J. (2011) Catalytic Conversion of Lignocellulosic Biomass to Fine Chemicals and Fuels.Chemical Society Reviews, 40, 5588-5617. https://doi.org/10.1039/c1cs15124j |
[12] |
Zakrzewska, M.E., Bogel-Łukasik, E. and Bogel-Łukasik, R. (2010) Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural—A Promising Biomass-Derived Building Block.Chemical Reviews, 111, 397-417. https://doi.org/10.1021/cr100171a |
[13] |
Zhang, Z., Liu, B., Lv, K., Sun, J. and Deng, K. (2014) Aerobic Oxidation of Biomass Derived 5-Hydroxymethylfurfural into 5-Hydroxymethyl-2-Furancarboxylic Acid Catalyzed by a Montmorillonite K-10 Clay Immobilized Molybdenum Acetylacetonate Complex.Green Chemistry, 16, 2762-2770. https://doi.org/10.1039/c4gc00062e |
[14] |
De Jong, E., Dam, M.A., Sipos, L. and Gruter, G.J.M. (2012) Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters.ACS Symposium Series, 1105, 1-13. https://doi.org/10.1021/bk-2012-1105.ch001 |
[15] |
Tsutsumi, K., Kurata, N., Takata, E., Furuichi, K., Nagano, M. and Tabata, K. (2014) Silicon Semiconductor-Assisted Brønsted Acid-Catalyzed Dehydration: Highly Selective Synthesis of 5-Hydroxymethylfurfural from Fructose under Visible Light Irradiation.Applied Catalysis B:Environmental, 147, 1009-1014. https://doi.org/10.1016/j.apcatb.2013.10.032 |
[16] |
卢秋杭, 任凯彬, 姜昊, 等. 光催化剂的种类及制备与应用研究进展[J]. 中国陶瓷工业, 2020, 27(4): 19-23. |
[17] |
Colmenares, J.C., Magdziarz, A. and Bielejewska, A. (2011) High-Value Chemicals Obtained from Selective Photo-Oxidation of Glucose in the Presence of Nanostructured Titanium Photocatalysts.Bioresource Technology, 102, 11254-11257. https://doi.org/10.1016/j.biortech.2011.09.101 |
[18] |
Bellardita, M., García-López, E.I., Marcì, G., Megna, B., Pomilla, F.R. and Palmisano, L. (2015) Photocatalytic Conversion of Glucose in Aqueous Suspensions of Heteropolyacid-TiO2Composites.RSC Advances, 5, 59037-59047. https://doi.org/10.1039/c5ra09894g |
[19] |
Payormhorm, J., Chuangchote, S., Kiatkittipong, K., Chiarakorn, S. and Laosiripojana, N. (2017) Xylitol and Gluconic Acid Productions via Photocatalytic-Glucose Conversion Using TiO2Fabricated by Surfactant-Assisted Techniques: Effects of Structural and Textural Properties.Materials Chemistry and Physics, 196, 29-36. https://doi.org/10.1016/j.matchemphys.2017.03.058 |
[20] |
Hattori, M., Kamata, K. and Hara, M. (2017) Photoassist-Phosphorylated TiO2as a Catalyst for Direct Formation of 5-(Hydroxymethyl) Furfural from Glucose.Physical Chemistry Chemical Physics, 19, 3688-3693. https://doi.org/10.1039/c6cp06864b |
[21] |
Tsutsumi, K., Kurata, N., Takata, E., Furuichi, K., Nagano, M. and Tabata, K. (2014) Silicon Semiconductor-Assisted Brønsted Acid-Catalyzed Dehydration: Highly Selective Synthesis of 5-Hydroxymethylfurfural from Fructose under Visible Light Irradiation.Applied Catalysis B:Environmental, 147, 1009-1014. https://doi.org/10.1016/j.apcatb.2013.10.032 |
[22] |
Cao, J., Xing, J., Zhang, Y., Tong, H., Bi, Y., Kako, T.,et al. (2013) Photoelectrochemical Properties of Nanomultiple CaFe2O4/ZnFe2O4pnJunction Photoelectrodes.Langmuir, 29, 3116-3124. https://doi.org/10.1021/la304377z |
[23] |
Xu, Q., Feng, J., Li, L., Xiao, Q. and Wang, J. (2015) Hollow ZnFe2O4/TiO2Composites: High-Performance and Recyclable Visible-Light Photocatalyst.Journal of Alloys and Compounds, 641, 110-118. https://doi.org/10.1016/j.jallcom.2015.04.076 |
[24] |
Fu, X., Li, S., Wen, J., Kang, F., Huang, C. and Zheng, X. (2021) Visible Light-Induced Photo-Fenton Dehydration of Fructose into 5-Hydroxymethylfurfural over ZnFe2O4-Coated Ag Nanowires.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 609, Article 125685. https://doi.org/10.1016/j.colsurfa.2020.125685 |
[25] |
Davis, S.E., Zope, B.N. and Davis, R.J. (2012) On the Mechanism of Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Supported Pt and Au Catalysts.Green Chemistry, 14, 143-147. https://doi.org/10.1039/c1gc16074e |
[26] |
Davis, S.E., Benavidez, A.D., Gosselink, R.W., Bitter, J.H., de Jong, K.P., Datye, A.K.,et al. (2014) Kinetics and Mechanism of 5-Hydroxymethylfurfural Oxidation and Their Implications for Catalyst Development.Journal of Molecular Catalysis A:Chemical, 388, 123-132. https://doi.org/10.1016/j.molcata.2013.09.013 |
[27] |
邹彬, 陈学珊, 郭静. 5-羟甲基糠醛催化氧化为2,5-呋喃二甲酸的研究进展[J]. 应用化工, 2016, 45(11): 2130-2134, 2138. |
[28] |
Siankevich, S., Savoglidis, G., Fei, Z., Laurenczy, G., Alexander, D.T.L., Yan, N.,et al. (2014) A Novel Platinum Nanocatalyst for the Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid under Mild Conditions.Journal of Catalysis, 315, 67-74. https://doi.org/10.1016/j.jcat.2014.04.011 |
[29] |
Chen, C., Wang, L., Zhu, B., Zhou, Z., El-Hout, S.I., Yang, J.,et al. (2021) 2,5-Furandicarboxylic Acid Production via Catalytic Oxidation of 5-Hydroxymethylfurfural: Catalysts, Processes and Reaction Mechanism.Journal of EnergyChemistry, 54, 528-554. https://doi.org/10.1016/j.jechem.2020.05.068 |
[30] |
Krivtsov, I., Ilkaeva, M., Salas-Colera, E., Amghouz, Z., García, J.R., Díaz, E.,et al. (2017) Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO2Anatase.The Journal of Physical ChemistryC, 121, 6770-6780. https://doi.org/10.1021/acs.jpcc.7b00354 |
[31] |
Nowak, I. and Ziolek, M. (1999) Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis.Chemical Reviews, 99, 3603-3624. https://doi.org/10.1021/cr9800208 |
[32] |
Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W.,et al. (2020) Photocatalytic Conversion of Waste Plastics into C2Fuels under Simulated Natural Environment Conditions.Angewandte Chemie International Edition, 59, 15497-15501. https://doi.org/10.1002/anie.201915766 |
[33] |
Eleutério, A., Santos, J.F., Passos, F.B., Aranda, D.A.G. and Schmal, M. (1998) The Effect of Preparation Method on Pt/Nb2O5 Catalysts.Brazilian Journal of Chemical Engineering, 15, 192-197. https://doi.org/10.1590/s0104-66321998000200014 |
[34] |
Murayama, T., Chen, J., Hirata, J., Matsumoto, K. and Ueda, W. (2014) Hydrothermal Synthesis of Octahedra-Based Layered Niobium Oxide and Its Catalytic Activity as a Solid Acid.Catalysis Science & Technology, 4, 4250-4257. https://doi.org/10.1039/c4cy00713a |
[35] |
Nakajima, K., Baba, Y., Noma, R., Kitano, M., Kondo, J.N., Hayashi, S.,et al. (2011) Nb2O5nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites.Journal of the American Chemical Society, 133, 4224-4227. https://doi.org/10.1021/ja110482r |
[36] |
Kreissl, H.T., Li, M.M.J., Peng, Y., Nakagawa, K., Hooper, T.J.N., Hanna, J.V.,et al. (2017) Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity.Journal of the American Chemical Society, 139, 12670-12680. https://doi.org/10.1021/jacs.7b06856 |
[37] |
Xia, Q., Chen, Z., Shao, Y., Gong, X., Wang, H., Liu, X.,et al. (2016) Direct Hydrodeoxygenation of Raw Woody Biomass into Liquid Alkanes.Nature Communications, 7, Article No. 11162. https://doi.org/10.1038/ncomms11162 |
[38] |
Huang, H., Wang, C., Huang, J., Wang, X., Du, Y. and Yang, P. (2014) Structure Inherited Synthesis of N-Doped Highly Ordered Mesoporous Nb2O5as Robust Catalysts for Improved Visible Light Photoactivity.Nanoscale, 6, 7274-7280. https://doi.org/10.1039/c4nr00505h |
[39] |
Wang, Y., Kong, X., Jiang, M., Zhang, F. and Lei, X. (2020) AZ-Scheme ZnIn2S4/Nb2O5Nanocomposite: Constructed and Used as an Efficient Bifunctional Photocatalyst for H2Evolution and Oxidation of 5-Hydroxymethylfurfural.Inorganic Chemistry Frontiers, 7, 437-446. https://doi.org/10.1039/c9qi01196j |
[40] |
Zhang, H., Wu, Q., Guo, C., Wu, Y. and Wu, T. (2017) Photocatalytic Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Nb2O5under Visible Light.ACS Sustainable Chemistry & Engineering, 5, 3517-3523. https://doi.org/10.1021/acssuschemeng.7b00231 |
[41] |
Dhingra, S., Chhabra, T., Krishnan, V. and Nagaraja, C.M. (2020) Visible-Light-Driven Selective Oxidation of Biomass-Derived HMF to DFF Coupled with H2Generation by Noble Metal-Free Zn0.5Cd0.5S/MnO2Heterostructures.ACS Applied Energy Materials, 3, 7138-7148. https://doi.org/10.1021/acsaem.0c01189 |
[42] |
Gonzalez-Casamachin, D.A., Rivera De la Rosa, J., Lucio-Ortiz, C.J., Sandoval-Rangel, L. and García, C.D. (2020) Partial Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O2and a Photocatalyst of a Composite of ZnO/PPy under Visible-Light: Electrochemical Characterization and Kinetic Analysis.Chemical Engineering Journal, 393, Article 124699. https://doi.org/10.1016/j.cej.2020.124699 |
[43] |
Han, G., Jin, Y., Burgess, R.A., Dickenson, N.E., Cao, X. and Sun, Y. (2017) Visible-light-driven Valorization of Biomass Intermediates Integrated with H2Production Catalyzed by Ultrathin Ni/cds Nanosheets.Journal of the American Chemical Society, 139, 15584-15587. https://doi.org/10.1021/jacs.7b08657 |
[44] |
Ye, H., Shi, R., Yang, X., Fu, W. and Chen, Y. (2018) P-Doped ZnxCd1-xS Solid Solutions as Photocatalysts for Hydrogen Evolution from Water Splitting Coupled with Photocatalytic Oxidation of 5-Hydroxymethylfurfural.Applied Catalysis B:Environmental, 233, 70-79. https://doi.org/10.1016/j.apcatb.2018.03.060 |
[45] |
Meng, S., Wu, H., Cui, Y., Zheng, X., Wang, H., Chen, S.,et al. (2020) One-Step Synthesis of 2D/2D-3D NiS/Zn3In2S6Hierarchical Structure toward Solar-to-Chemical Energy Transformation of Biomass-Relevant Alcohols.Applied Catalysis B:Environmental, 266, Article 118617. https://doi.org/10.1016/j.apcatb.2020.118617 |
[46] |
Teter, D.M. and Hemley, R.J. (1996) Low-Compressibility Carbon Nitrides.Science, 271, 53-55. https://doi.org/10.1126/science.271.5245.53 |
[47] |
Zhang, Y., Thomas, A., Antonietti, M. and Wang, X. (2008) Activation of Carbon Nitride Solids by Protonation: Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments.Journal of the American Chemical Society, 131, 50-51. https://doi.org/10.1021/ja808329f |
[48] |
Wang, X., Meng, S., Zhang, S., Zheng, X. and Chen, S. (2020) 2D/2D MXene/g-C3N4for Photocatalytic Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Formylfuran.Catalysis Communications, 147, Article 106152. https://doi.org/10.1016/j.catcom.2020.106152 |
[49] |
García-López, E.I., Pomilla, F.R., Bloise, E., Lü, X., Mele, G., Palmisano, L.,et al. (2020) C3N4Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural under Solar Irradiation.Topics in Catalysis, 64, 758-771. https://doi.org/10.1007/s11244-020-01293-0 |
[50] |
Zhang, H., Feng, Z., Zhu, Y., Wu, Y. and Wu, T. (2019) Photocatalytic Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran on WO3/g-C3N4Composite under Irradiation of Visible Light.Journal of Photochemistry and Photobiology A:Chemistry, 371, 1-9. https://doi.org/10.1016/j.jphotochem.2018.10.044 |
[51] |
Xu, S., Zhou, P., Zhang, Z., Yang, C., Zhang, B., Deng, K.,et al. (2017) Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O2and a Photocatalyst of Co-Thioporphyrazine Bonded to g-C3N4.Journal of the American Chemical Society, 139, 14775-14782. https://doi.org/10.1021/jacs.7b08861 |
[52] |
陈建丽. 氧化石墨烯的功能化及其衍生物, 复合物的制备与性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2013. |
[53] |
Ma, B., Wang, Y., Guo, X., Tong, X., Liu, C., Wang, Y.,et al. (2018) Photocatalytic Synthesis of 2,5-Diformylfuran from 5-Hydroxymethyfurfural or Fructose over Bimetallic Au-Ru Nanoparticles Supported on Reduced Graphene Oxides.Applied Catalysis A:General, 552, 70-76. https://doi.org/10.1016/j.apcata.2018.01.002 |
[54] |
Guo, X., Hao, C., Jin, G., Zhu, H. and Guo, X. (2014) Copper Nanoparticles on Graphene Support: An Efficient Photocatalyst for Coupling of Nitroaromatics in Visible Light.Angewandte Chemie, 126, 2004-2008. https://doi.org/10.1002/ange.201309482 |
[55] |
Guo, X., Jiao, Z., Jin, G. and Guo, X. (2015) Photocatalytic Fischer-Tropsch Synthesis on Graphene-Supported Worm-Like Ruthenium Nanostructures.ACS Catalysis, 5, 3836-3840. https://doi.org/10.1021/acscatal.5b00697 |