[1] |
Edeki, S., Ugbebor, O. and Owoloko, E. (2015) Analytical Solutions of the Black-Scholes Pricing Model for European Option Valuation via a Projected Differential Transformation Method. Entropy, 17, 7510-7521. https://doi.org/10.3390/e17117510 |
[2] |
An, X., Liu, F., Zheng, M., Anh, V.V. and Turner, I.W. (2021) A Space-Time Spectral Method for Time-Fractional Black-Scholes Equation. Applied Numerical Mathematics, 165, 152-166. https://doi.org/10.1016/j.apnum.2021.02.009 |
[3] |
姜礼尚. 金融衍生产品定价的数学模型与案例分析 [M]. 北京: 高等教育出版社, 2008. |
[4] |
Wyss, W. (2000) The fractional Black-Scholes Equation. Fractional Calculus and Applied Anal- ysis, 3, 51-61. |
[5] |
Kumar, S., Yildirim, A., Khan, Y. and Jafari, H. (2012) Analytical Solution of Fractional Black-Scholes European Option Pricing Equation by Using Laplace Transform. Fractional Calculus and Applied Analysis, 2, 1-9. |
[6] |
Cartea, Á. (2013) Derivatives Pricing with Marked Point Processes Using Tick-by-Tick Data. Quantitative Finance, 13, 111-123. https://doi.org/10.1080/14697688.2012.661447 |
[7] |
Leonenko, N.N., Meerschaert, M.M. and Sikorskii, A. (2013) Fractional Pearson Diffusions. Journal of Mathematical Analysis and Applications, 403, 532-546. https://doi.org/10.1016/j.jmaa.2013.02.046 |
[8] |
Cox, J.C. and Ross, S.A. (1976) The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics, 3, 145-166. https://doi.org/10.1016/0304-405x(76)90023-4 |
[9] |
Jo, S., Yang, M. and Kim, G. (2016) On Convergence of Laplace Inversion for the American Put Option under the CEV Model. Journal of Computational and Applied Mathematics, 305, 36-43. https://doi.org/10.1016/j.cam.2016.03.030 |
[10] |
Wang, Y., Rong, X. and Zhao, H. (2018) Optimal Investment Strategies for an Insurer and a Reinsurer with a Jump Diffusion Risk Process under the CEV Model. Journal of Computational and Applied Mathematics, 328, 414-431. https://doi.org/10.1016/j.cam.2017.08.001 |
[11] |
Jumarie, G. (2008) Stock Exchange Fractional Dynamics Defined as Fractional Exponential Growth Driven by (Usual) Gaussian White Noise. Application to Fractional Black-Scholes Equations. Insurance: Mathematics and Economics, 42, 271-287. https://doi.org/10.1016/j.insmatheco.2007.03.001 |
[12] |
许作良, 马青华. 金融中的反问题及数值方法 [M]. 北京: 科学出版社, 2018. |
[13] |
Bouchouev, I. and Isakov, V. (1997) The Inverse Problem of Option Pricing. Inverse Problems, 13, L11-L17. https://doi.org/10.1088/0266-5611/13/5/001 |
[14] |
Jiang, X. and Xu, X. (2020) On Implied Volatility Recovery of a Time-Fractional Black-Scholes Equation for Double Barrier Options. Applicable Analysis, 100, 3145-3160. https://doi.org/10.1080/00036811.2020.1712369 |
[15] |
Flint, E.J. and Mare, E. (2016) Fractional Black-Scholes Option Pricing, Volatility Calibration and Implied Hurst Exponents. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2793927 |
[16] |
Djeutcha, E. and Kamdem, J.S. (2021) Local and Implied Volatilities with the Mixed-Modified- Fractional-Dupire Model. Chaos, Solitons & Fractals, 152, Article 111328. https://doi.org/10.1016/j.chaos.2021.111328 |
[17] |
Haentjens, T. and Hout, K. (2010) ADI Finite Difference Discretization of the Heston-Hull- White PDE. AIP Conference Proceedings, 1281, 1995-1999. https://doi.org/10.1063/1.3498329 |
[18] |
Jin, Y., Wang, J., Kim, S., Heo, Y., Yoo, C., Kim, Y., et al. (2018) Reconstruction of the Time-Dependent Volatility Function Using the Black-Scholes Model. Discrete Dynamics in Nature and Society, 2018, 1-9. https://doi.org/10.1155/2018/3093708 |