[1] |
Kirchhoff, G. (1883) Mechanik, Teubner, Leipzig. |
[2] |
Alves, C.O., Corrˆea, F.J.S.A. and Ma, T.F. (2005) Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type. Computers & Mathematics with Applications, 49, 85-93. https://doi.org/10.1016/j.camwa.2005.01.008 |
[3] |
Julio, F., Correa, S.A. and Figueiredo, G.M. (2006) On an Elliptic Equation of p-Kirchhoff Type via Variational Methods. Bulletin of the Australian Mathematical Society, 74, 263-277. https://doi.org/10.1017/s000497270003570x |
[4] |
Corrˆea, F.J.S.A. and Figueiredo, G.M. (2009) On a p-Kirchhoff Equation via Krasnoselskii’s Genus. Applied Mathematics Letters, 22, 819-822. https://doi.org/10.1016/j.aml.2008.06.042 |
[5] |
Chen, C., Kuo, Y. and Wu, T. (2011) The Nehari Manifold for a Kirchhoff Type Problem Involving Sign-Changing Weight Functions. Journal of Differential Equations, 250, 1876-1908. https://doi.org/10.1016/j.jde.2010.11.017 |
[6] |
Li, Y., Li, F. and Shi, J. (2012) Existence of a Positive Solution to Kirchhoff Type Problems without Compactness Conditions. Journal of Differential Equations, 253, 2285-2294. https://doi.org/10.1016/j.jde.2012.05.017 |
[7] |
Liu, D. (2010) On p-Kirchhoff Equation via Fountain Theorem and Dual Fountain Theorem. Nonlinear Analysis: Theory, Methods Applications, 72, 302-308. https://doi.org/10.1016/j.na.2009.06.052 |
[8] |
Liu, D. and Zhao, P. (2012) Multiple Nontrivial Solutions to p-Kirchhoff Equation. Nonlinear Analysis: Theory, Methods & Applications, 75, 5032-5038. https://doi.org/10.1016/j.na.2012.04.018 |
[9] |
Wu, X. (2011) Existence of Nontrivial Solutions and High Energy Solutions for Schro¨dinger- Kirchhoff-Type Equations in RN . Nonlinear Analysis: Real World Applications, 12, 1278-1287. https://doi.org/10.1016/j.nonrwa.2010.09.023 |
[10] |
Wu, T. (2006) On Semilinear Elliptic Equations Involving Concave-Convex Nonlinearities and Sign-Changing Weight Function. Journal of Mathematical Analysis and Applications, 318, 253-270. https://doi.org/10.1016/j.jmaa.2005.05.057 |
[11] |
Willem, M. (1996) Minimax Theorem. Birkha¨user Boston,. |
[12] |
Zhao, L., Li, A. and Su, J. (2012) Existence and Multiplicity Results for Quasilinear Elliptic Exterior Problems with Nonlinear Boundary Conditions. Nonlinear Analysis: Theory, Methods Applications, 75, 2520-2533. https://doi.org/10.1016/j.na.2011.10.046 |
[13] |
Lin, X. and Tang, X.H. (2013) Existence of Infinitely Many Solutions p-Laplacian Equations in RN . Nonlinear Analysis: Theory, Methods & Applications, 92, 72-81. https://doi.org/10.1016/j.na.2013.06.011 |
[14] |
Zhao, J. and Zhao, P.H. (2007) Infinitely Many Weak Solutions for a p-Laplacian Equation with Nonlinear Boundary Conditions. Electronic Journal of Differential Equations, 2007, 1-14. |
[15] |
Ambrosetti, A. and Rabinowitz, P.H. (1973) Dual Variational Methods in Critical Point Theory and Applications. Journal of Functional Analysis, 14, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7 |
[16] |
Chen, C., Chen, L. and Xiu, Z. (2013) Existence of Nontrivial Solutions for Singular Quasilinear Elliptic Equations RN . Computers Mathematics with Applications, 65, 1909-1919. https://doi.org/10.1016/j.camwa.2013.04.017 |
[17] |
Lyberopoulos, A.N. (2011) Quasilinear Scalar Field Equations with Competing Potentials. Journal of Differential Equations, 251, 3625-3657. https://doi.org/10.1016/j.jde.2011.08.011 |