[1] |
Sharma, S.K., Kaur, N., Singh, J., et al. (2016) Salen Decorated Nanostructured ZnO Chemosensor for the Detection of Mercuric Ions (Hg2+). Sensors and Actuators B: Chemical, 232, 712-721. https://doi.org/10.1016/j.snb.2016.04.017 |
[2] |
Puglisi, R., Pappalardo, A., Gulino, A., et al. (2018) Supramolecular Recognition of a CWA Simulant by Metal-Salen Complexes: The First Multi-Topic Approach. Chemical Communications, 54, 11156-11159. https://doi.org/10.1039/C8CC06425C |
[3] |
Ali, S., Ara, T., Danish, M., et al. (2020) Tin(IV) Complexes with Salen Type Schiff Base: Synthesis, Spectroscopic Characterization, Crystal Structure, Antibacterial Screening and Cytotoxicity. Russian Journal of Coordination Chemistry, 45, 889-898. https://doi.org/10.1134/S1070328419120017 |
[4] |
Ali, S.H., Al-Redha, H.M.A., Sachit, B.A., et al. (2020) Synthesis, Characterization, Theoretical Studies, and Antimicrobial/Antitumor Potencies of Salen and Salen/Imidazole Complexes of Co (II), Ni (II), Cu (II), Cd (II), Al (III) and La (III). Applied Organometallic Chemistry, 34, e5912. |
[5] |
Shi, R., Zhang, Z. and Luo, F. (2020) N-Doped Graphene-Based CuO/WO3/Cu Composite Material with Performances of Catalytic Decomposition 4-Nitrophenol and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry Communications, 121, Article ID: 108246. https://doi.org/10.1016/j.inoche.2020.108246 |
[6] |
Jone Kirubavathy, S., Velmurugan, R., Tamilarasan, B., et al. (2016) Synthesis, Characterization, Single-Crystal XRD, and Biological Evaluation of Nickel(II) Salen Sulfadiazine Complex. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46, 1751-1758. https://doi.org/10.1080/15533174.2015.1137038 |
[7] |
Tomczyk, D., Bukowski, W., Bester, K, et al. (2017) The Mechanism of Electropolymerization of Nickel(Ii) Salen Type Complexes. New Journal of Chemistry, 41, 2112-2123. https://doi.org/10.1039/C6NJ03635J |
[8] |
McKee, M.L. (2022) Exploring the Reaction Mechanism of C-H Oxidation by Copper-Salen Complexes. The Journal of Physical Chemistry A, 30, 4969-4980. https://doi.org/10.1021/acs.jpca.2c03344 |
[9] |
Wan, S., Li, M., Zhang, Z., et al. (2020) Reversible Light-Driven Magnetic Switching of Salen Cobalt Complex. Science China Chemistry, 63, 1191-1197. https://doi.org/10.1007/s11426-020-9786-8 |
[10] |
Consiglio, G., Oliveri, I.P., Failla, S., et al. (2019) On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands. Molecules, 24, Article 2514. https://doi.org/10.3390/molecules24132514 |
[11] |
Liang, Y., Duan, R.L., Hu, C.Y., et al. (2017) Salen-Iron Complexes: Synthesis, Characterization and Their Reactivity with Lactide. Chinese Journal of Polymer Science, 36, 185-189. https://doi.org/10.1007/s10118-018-2068-0 |
[12] |
Moncol, J. and Izakovič, M. (2017) Structurally Diverse and Phase Transitions of Manganese(III) Salen Complexes. Acta Crystallographica Section A: Foundations and Advances, 73, 1240-1240. https://doi.org/10.1107/S2053273317083346 |
[13] |
Nagasawa, S., Fujiki, S., Sasano, Y., et al. (2021) Chromium-Salen Complex/Nitroxyl Radical Cooperative Catalysis: A Combination for Aerobic Intramolecular Dearomative Coupling of Phenols. The Journal of Organic Chemistry, 86, 6952-6968. https://doi.org/10.26434/chemrxiv.12924005.v1 |
[14] |
Duan, R., Qu, Z., Pang, X., et al. (2017) Ring‐Opening Polymerization of Lactide Catalyzed by Bimetallic Salen‐Type Titanium Complexes. Chinese Journal of Chemistry, 35, 640-644. https://doi.org/10.1002/cjoc.201600580 |
[15] |
Bendre, R.S., Tadavi, S.K. and Patil, M.M. (2018) Synthesis, Crystal Structures and Biological Activities of Transition Metal Complexes of a Salen-Type Ligand. Transition Metal Chemistry, 43, 83-89. https://doi.org/10.1007/s11243-017-0196-y |
[16] |
Das, L.K., Bhunia, P., Gomila, R.M., et al. (2023) Influence of Non-Covalent Interactions on the Coordination Geometry of Ni(Ii) in Ni(Ii)-M(Ii) Complexes (M = Zn and Hg) with a Salen-Type N2O2 Schiff Base Ligand and Thiocyanate Ion as the Coligand. CrystEngComm, 25, 1393-1402. https://doi.org/10.1039/D2CE01632J |
[17] |
Chen, C., Chen, H., Yan, P., et al. (2013) Structure and Electrochemistry of Salen Type Cerium (IV) Complexes Tuned by Multiform Counterions. Inorganica Chimica Acta, 405, 182-187. https://doi.org/10.1016/j.ica.2013.05.014 |
[18] |
Es-Sounni, B., et al. (2022) Synthesis, Characterization, Antioxidant and Antibacterial Activities of Six Metal Complexes Based Tetradentate Salen Type Bis-Schiff Base. Biointerface Research in Applied Chemistry, 13, Article 333. https://doi.org/10.33263/BRIAC134.333 |
[19] |
Es-Sounni, B., et al. (2012) Synthesis and Antibacterial Activity of Some Schiff Bases and Their Metal Complexes. Journal of Coordination Chemistry, 65, 141-150. |
[20] |
Mohamed, N.B., et al. (2010) Antibacterial Activity of Some Schiff Bases and Their Metal(II) Complexes. Journal of Coordination Chemistry, 63, 113-122. |
[21] |
Elouard, T., et al. (2011) Synthesis and Antimicrobial Activity of Some Schiff Bases and Their Nickel(II) Complexes. Journal of Coordination Chemistry, 64, 107-116. |
[22] |
Hui, E.Y.L., et al. (2016) Structural Optimization of Coumarin-Based Salen Fe(III) Complexes for the Detection of Pyrophosphate. Analyst, 141, 5366-5375. |
[23] |
Kumar, S., et al. (2017) Salen Type Schiff Bases and Their Metal Complexes: Application in the Detection of Biological Macromolecules. Journal of Inorganic Organometallic Chemistry, 17, 107-117. |
[24] |
Wang, Y., et al. (2015) Salen Type Ligands and Their Metal Complexes for Environmental Monitoring: A Review. Journal of Environmental Monitoring, 17, 343-356. |
[25] |
Baecker, D., Sesli, Ö., Knabl, L., et al. (2020) Investigating the Antibacterial Activity of Salen/Salophene Metal Complexes: Induction of Ferroptosis as Part of the Mode of Action. European Journal of Medicinal Chemistry, 209, Article ID: 112907. https://doi.org/10.1016/j.ejmech.2020.112907 |
[26] |
Pires, A, S., Batista, J., Murtinho, D., et al. (2020) Synthesis, Characterization and Evaluation of the Antibacterial and Antitumor Activity of HalogenatedSalen Copper (II) Complexes Derived from Camphoric Acid. Applied Organometallic Chemistry, 34, e5569. https://doi.org/10.1002/aoc.5569 |
[27] |
Hui, E.Y.L., Tay, D.W.P., Richard, J.A., et al. (2022) Structural Investigation of Fe(III)-Salen Complexes as “Turn-On” Fluorogenic Probes for Selective Detection of Pyrophosphate Ions. Dyes and Pigments, 207, Article ID: 110708. https://doi.org/10.1016/j.dyepig.2022.110708 |
[28] |
Li, S., Liu, M., Liu, Q., et al. (2022) Zeolite Encapsulated Cu(II)-Salen Complexes for the Catalytic Degradation of Dyes in a Neutral Condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129153. https://doi.org/10.1016/j.colsurfa.2022.129153 |
[29] |
Al-Zaban, M.I., Mahmoud, M.A. and AlHarbi, M.A. (2021) Catalytic Degradation of Methylene Blue Using Silver Nanoparticles Synthesized by Honey. Saudi Journal of Biological Sciences, 28, 2007-2013. https://doi.org/10.1016/j.sjbs.2021.01.003 |
[30] |
Fan, L., Zhu, H., Wang, K., et al. (2023) Study on the Degradation of Methylene Blue by Cu-Doped SnSe. Molecules, 28, Article 5988. https://doi.org/10.3390/molecules28165988 |
[31] |
Zubrik, A., Jáger, D., Mačingová, E., et al. (2023) Spontaneous Degradation of Methylene Blue Adsorbed on Magnetic Biochars. Scientific Reports, 13, Article No.: 14773. https://doi.org/10.1038/s41598-023-39976-9 |
[32] |
Fan, Y., Li, J., Ren, Y., et al. (2017) A Ni(Salen)-Based Metal-Organic Framework: Synthesis, Structure, and Catalytic Performance for CO2 Cycloaddition with Epoxides. European Journal of Inorganic Chemistry, 2017, 4982-4989. https://doi.org/10.1002/ejic.201700871 |
[33] |
Huang, K., Wang, Z. and Wu, D. (2018) Synthesis of Nickel Lysine Salen Complex and Its Catalytic Performance for Styrene Epoxidation. Kinetics and Catalysis, 59, 283-289. https://doi.org/10.1134/S0023158418030060 |
[34] |
Mierzejewska, M., Łępicka, K., Kalecki, J., et al. (2022) Ni(OH)2-Type Nanoparticles Derived from Ni Salen Polymers: Structural Design toward Functional Materials for Improved Electrocatalytic Performance. ACS Applied Materials & Interfaces, 14, 33768-33786. https://doi.org/10.1021/acsami.2c06147 |
[35] |
Wang, R., Kuwahara, Y., Mori, K., et al. (2020) Improvement of the Water Oxidation Performance of Ti, F Co-Modified Hematite by Surface Modification with a Co(Salen) Molecular Cocatalyst. Journal of Materials Chemistry A, 8, 21613-21622. https://doi.org/10.1039/D0TA07119F |
[36] |
Nuñez-Dallos, N., Posada, A.F. and Hurtado, J. (2017) Coumarin Salen-Based Zinc Complex for Solvent-Free Ring Opening Polymerization of ε-Caprolactone. Tetrahedron Letters, 58, 977-980. https://doi.org/10.1016/j.tetlet.2017.01.088 |
[37] |
Lee, S.H., Shin, N., Kwak, S.W., et al. (2017) Intriguing Indium-Salen Complexes as Multicolor Luminophores. Inorganic Chemistry, 56, 2621-2626. https://doi.org/10.1021/acs.inorgchem.6b02797 |
[38] |
Panja, S.K., Dwivedi, N. and Saha, S. (2016) Tuning the Intramolecular Charge Transfer (ICT) Process in Push-Pull Systems: Effect of Nitro Groups. RSC Advances, 6, 105786-105794. https://doi.org/10.1039/C6RA17521J |
[39] |
Gao, H., Gao, Y., Wang, C., et al. (2018) Anomalous Effect of Intramolecular Charge Transfer on the Light Emitting Properties of BODIPY. ACS Applied Materials & Interfaces, 10, 14956-14965. https://doi.org/10.1021/acsami.7b13444 |