[1] |
周丹, 刘利哲, 张桐楠. 基于“开导之后宜补论”治疗消渴内障的经验探析[J]. 中国中医眼科杂志, 2016, 26(1): 61-63. |
[2] |
单祎. 糖尿病性视网膜病变的视力损伤负担及其危险因素分析[D]: [博士学位论文]. 杭州: 浙江大学, 2021. |
[3] |
Yau, J.W.Y., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., Chen, S.-J., Dekker, J.M., Fletcher, A., Grauslund, J., Haffner, S., Hamman, R.F., Ikram, M.K., Kayama, T., Klein, B.E.K., Klein, R., Krishnaiah, S., Mayurasakorn, K., O’Hare, J.P., Orchard, T.J., Porta, M., Rema, M., Roy, M.S., Sharma, T., Shaw, J., Taylor, H., Tielsch, J.M., Varma, R., Wang, J.J., Wang, N., West, S., Xu, L., Yasuda, M., Zhang, X., Mitchell, P. and Wong, T.Y. (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy.Diabetes Care, 35, 556-564. https://doi.org/10.2337/dc11-1909 |
[4] |
中华医学会糖尿病学分会视网膜病变学组. 糖尿病视网膜病变防治专家共识[J]. 中华糖尿病杂志, 2018, 10(4): 241-247. |
[5] |
Magliano, D.J. and Boyko, E.J. (2021) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation, Brussels. |
[6] |
Yang, J., Wang, X. and Jiang, S. (2023) Development and Validation of a Nomogram Model for Individualized Prediction of Hypertension Risk in Patients with Type 2 Diabetes Mellitus.Scientific Reports, 13, Article No. 1298. https://doi.org/10.1038/s41598-023-28059-4 |
[7] |
Klein, R., Klein, B.E.K., Moss, S.E.,et al. (1995) The Wisconsin Epidemiologic Study of Diabetic Retinopathy.Archives of Ophthalmology, 113, 702-703. https://doi.org/10.1001/archopht.1995.01100060024016 |
[8] |
Yang, Y., Cai, Z., Qiu, S. and Xu, P. (2024) Vision Transformer with Masked Autoencoders for Referable Diabetic Retinopathy Classification Based on Large-Size Retina Image.PLOS ONE, 19, e0299265. https://doi.org/10.1371/journal.pone.0299265 |
[9] |
Atcı, Ş.Y., Güneş, A., Zontul, M. and Arslan, Z. (2024) Identifying Diabetic Retinopathy in the Human Eye: A Hybrid Approach Based on a Computer-Aided Diagnosis System Combined with Deep Learning.Tomography, 10, 215-230. https://doi.org/10.3390/tomography10020017 |
[10] |
Li, A., Cheng, J., Wong, D. and Jiang, L. (2016) Integrating Holistic and Local Deep Features for Glaucoma Classification. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC), Orlando, 16-20 August 2016, 1328-1331. https://doi.org/10.1109/EMBC.2016.7590952 |
[11] |
Demir, F. and Taşcı, B. (2021) An Effective and Robust Approach Based on R-CNN+LSTM Model and NCAR Feature Selection for Ophthalmological Disease Detection from Fundus Images.Journal of Personalized Medicine, 11, Article 1276. https://doi.org/10.3390/jpm11121276 |
[12] |
Ezhei, M., Plonka, G. and Rabbani, H. (2022) Retinal Optical Coherence Tomography Image Analysis by a Restricted Boltzmann Machine.Biomedical Optics Express, 13, 4539-4558. https://doi.org/10.1364/BOE.458753 |
[13] |
Foysal, M., Hossain, A., Yassine, A. and Hossain, M.S. (2023) Detection of COVID-19 Case from Chest CT Images Using Deformable Deep Convolutional Neural Network.Journal of Healthcare Engineering, 2023, Article ID: 4301745. https://doi.org/10.1155/2023/4301745 |
[14] |
舒军, 杨露, 陈义红, 杨莉, 邓芳. 基于小数据集的改进LeNet图像分类模型研究[J]. 中南民族大学学报(自然科学版), 2019, 38(4): 605-612. |
[15] |
肖小梅, 杨红云, 易文龙, 万颖, 黄琼, 罗建军. 改进的Alexnet模型在水稻害虫图像识别中的应用[J]. 科学技术与工程, 2021, 21(22): 9447-9454. |
[16] |
伍思雨, 冯骥. 基于改进VGGNet卷积神经网络的鲜花识别[J]. 重庆师范大学学报(自然科学版), 2020, 37(4): 124-131. |
[17] |
张烽, 翁英健, 苏家明, 潘航露, 李馨, 郑尚知, 陈伟斌. 基于TV模型与GoogLeNet的甲状腺结节图像分类[J]. 计算机应用研究, 2020, 37(S1): 421-422, 417. |
[18] |
邱云飞, 张家欣, 兰海, 宗佳旭. 融合张量合成注意力的改进ResNet图像分类模型[J]. 激光与光电子学进展, 2023, 60(6): 87-96. |
[19] |
李赵旭, 宋涛, 葛梦飞, 刘嘉欣, 王宏伟, 王佳. 基于改进Inception模型的乳腺癌病理学图像分类[J]. 激光与光电子学进展, 2021, 58(8): 388-394. |
[20] |
Li, J.-P.O., Liu, H., Ting, D.S.J., Jeon, S., Chan, R.V.P., Kim, J.E., Sim, D.A., Thomas, P.B.M., Lin, H., Chen, Y., Sakomoto, T., Loewenstein, A., Lam, D.S.C., Pasquale, L.R., Wong, T.Y., Lam, L.A. and Ting, D.S.W. (2021) Digital Technology, Tele-Medicine and Artificial Intelligence in Ophthalmology: A Global Perspective.Progress in Retinal and Eye Research, 82, Article 100900. https://doi.org/10.1016/j.preteyeres.2020.100900 |
[21] |
Bogunović, H., Montuoro, A., Baratsits, M., Karantonis, M.G., Waldstein, S.M., Schlanitz, F. and Schmidt-Erfurth, U. (2017) Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging.Investigative Ophthalmology & Visual Science, 58, BIO141-BIO150. https://doi.org/10.1167/iovs.17-21789 |
[22] |
Grzybowski, A., Rao, D.P., Brona, P., Negiloni, K., Krzywicki, T. and Savoy, F.M. (2023) Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence.Ophthalmic Research, 66, 1286-1292. https://doi.org/10.1159/000534098 |
[23] |
郭潇雅. 嵩岳机器人惊艳亮相[J]. 中国医院院长, 2018(14): 28-29. |
[24] |
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017) Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848. https://doi.org/10.1109/TPAMI.2017.2699184 |
[25] |
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015) Going Deeper with Convolutions. 2015IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, 7-12 June 2015, 1-9. https://doi.org/10.1109/CVPR.2015.7298594 |
[26] |
Caicho, J., Chuya-Sumba, C., Jara, N., Salum, G.M., Tirado-Espín, A., Villalba-Meneses, G., Alvarado-Cando, O., Cadena-Morejón, C. and Almeida-Galárraga, D.A. (2022) Diabetic Retinopathy: Detection and Classification Using AlexNet, GoogleNet and ResNet50 Convolutional Neural Networks. In: Narváez, F.R., Proaño, J., Morillo, P., Vallejo, D., González Montoya, D. and Díaz, G.M., Eds.,Smart Technologies,Systems and Applications, Springer, Cham, 259-271. https://doi.org/10.1007/978-3-030-99170-8_19 |
[27] |
Sarwinda, D., Paradisa, R.H., Bustamam, A. and Anggia, P. (2021) Deep Learning in Image Classification Using Residual Network (ResNet) Variants for Detection of Colorectal Cancer.Procedia Computer Science, 179, 423-431. https://doi.org/10.1016/j.procs.2021.01.025 |
[28] |
Duan, J., Shi, T., Zhou, H., Xuan, J. and Wang, S. (2020) A Novel ResNet-Based Model Structure and Its Applications in Machine Health Monitoring.Journal of Vibration and Control, 27, 1036-1050. https://doi.org/10.1177/1077546320936506 |
[29] |
Zeng, L.Z., Cui, J., Jiang, T., Tu, L.P., Liu, H.D., Gong, Y.B., Xu, L. and Xu, J.T. (2023) Study on the Difference and Regularity of Tongue Images in 309 Patients with Different Pathological Stages of Non-Small Cell Lung Cancer.Technology and HealthCare, 32, 1403-1420. https://doi.org/10.3233/THC-230372 |
[30] |
Sreenivasu, S.V.N., Santosh Kumar Patra, P., Midasala, V., Murthy, G.S.N., Janapati, K.C., Swarup Kumar, J. and Kumar, P.M. (2023) ODQN-Net: Optimized Deep Q Neural Networks for Disease Prediction through Tongue Image Analysis Using Remora Optimization Algorithm.Big Data, 11, 452-465. https://doi.org/10.1089/big.2023.0014 |
[31] |
Zhu, X., Wang, F., Mao, J., Huang, Y., Zhou, P. and Luo, J. (2023) A Protocol for Digitalized Collection of Traditional Chinese Medicine (TCM) Pulse Information Using Bionic Pulse Diagnosis Equipment.Phenomics, 3, 519-534. https://doi.org/10.1007/s43657-023-00104-2 |
[32] |
Feng, Y., Hu, C., Cui, K., Fan, M., Xiang, W., Ye, D., Shi, Y., Ye, H., Bai, X., Wei, Y., Xu, Y. and Huang, J. (2023) GSK840 Alleviates Retinal Neuronal Injury by Inhibiting RIPK3/MLKL-Mediated RGC Necroptosis after Ischemia/Reperfusion.Investigative Ophthalmology & Visual Science, 64, Article 42. https://doi.org/10.1167/iovs.64.14.42 |