[1] |
Boruah, R., Mohanta, D., Choudhury, A., Nath, P. and Ahmed, G.A. (2015) Surface Plasmon Resonance-Based Protein Bio-Sensing Using a Kretschmann Configured Double Prism Arrangement. IEEE Sensors Journal, 15, 6791-6796. https://doi.org/10.1109/JSEN.2015.2464675 |
[2] |
Geng, Z., Li, Q., Wang, W. and Li, Z. (2010) PDMS Prism-Glass Optical Coupling for Surface Plasmon Resonance Sensors Based on MEMS Technology. Science China Information Sciences, 53, 2144-2158. https://doi.org/10.1007/s11432-010-4072-z |
[3] |
Luo, W., Wang, R., Li, H., Kou, J., Zeng, X., Huang, H., Hu, X. and Huang, W. (2019) Simultaneous Measurement of Refractive Index and Temperature for Prism-Based Surface Plasmon Resonance Sensors. Optics Express, 27, 576-589. https://doi.org/10.1364/OE.27.000576 |
[4] |
Ozdemir, S.K. and Turhan-Sayan, G. (2003) Temperature Effects on Surface Plasmon Resonance: Design Considerations for an Optical Temperature Sensor. Journal of Lightwave Technology, 21, 805-814. https://doi.org/10.1109/JLT.2003.809552 |
[5] |
Saha, S., Mehan, N., Sreenivas, K. and Gupta, V. (2009) Temperature Dependent Optical Properties of (002) Oriented ZnO Thin Film Using Surface Plasmon Resonance. Applied Physics Letters, 95, Article ID: 071106. https://doi.org/10.1063/1.3206954 |
[6] |
Shibayama, J., Mitsutake, K., Yamauchi, J. and Nakano, H. (2020) Kretschmann-and Otto-Type Surface Plasmon Resonance Waveguide Sensors in the Terahertz Regime. Microwave and Optical Technology Letters, 63, 103-106. https://doi.org/10.1002/mop.32581 |
[7] |
Verma, A., Prakash, A. and Tripathi, R. (2016) Sensitivity Improvement of Graphene Based Surface Plasmon Resonance Biosensors with Chaclogenide Prism. Optik, 127, 1787-1791. https://doi.org/10.1016/j.ijleo.2015.11.083 |
[8] |
Zhu, J. and Li, N. (2020) Novel High Sensitivity SPR Sensor Based on Surface Plasmon Resonance Technology and IMI Waveguide Structure. Results in Physics, 17, Article ID: 103049. https://doi.org/10.1016/j.rinp.2020.103049 |
[9] |
Nylander, C., Bo, L. and Lind, T. (1983) Gas Detection by Means of Surface Plasmon Resonance. Sensors & Actuators, 3, 79-88. https://doi.org/10.1016/0250-6874(82)80008-5 |
[10] |
Piliarik, M. and Homola, J. (2009) Surface Plasmon Resonance (SPR) Sensors: Approaching Their Limits? Optics Express, 17, 16505-16517. https://doi.org/10.1364/OE.17.016505 |
[11] |
Del Villar, I., Torres, V. and Beruete, M. (2015) Experimental Demonstration of Lossy Mode and Surface Plasmon Resonance Generation with Kretschmann Configuration. Optics Letters, 40, 4739-4742. https://doi.org/10.1364/OL.40.004739 |
[12] |
Del Villar, I., Zamarreno, C.R., Hernaez, M., Arregui, F.J. and Matias, I.R. (2010) Lossy Mode Resonance Generation with Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications. Journal of Lightwave Technology, 28, 111-117. https://doi.org/10.1109/JLT.2009.2036580 |
[13] |
Wang, Q., Li, X., Zhao, W.-M. and Jin, S. (2019) Lossy Mode Resonance-Based Fiber Optic Sensor Using Layer-by-Layer SnO2 Thin Film and SnO2 Nanoparticles. Applied Surface Science, 492, 374-381. https://doi.org/10.1016/j.apsusc.2019.06.168 |
[14] |
Usha, S.P., Mishra, S.K. and Gupta, B.D. (2015) Fiber Optic Hydrogen Sulfide Gas Sensors Utilizing ZnO Thin Film/ZnO Nanoparticles: A Comparison of Surface Plasmon Resonance and Lossy Mode Resonance. Sensors and Actuators B: Chemical, 218, 196-204. https://doi.org/10.1016/j.snb.2015.04.108 |
[15] |
Homola, J. (2010) Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 108, 462-493. |
[16] |
Wolfbeis, O.S. (2008) Fiber-Optic Chemical Sensors and Biosensors. Analytical Chemistry, 74, 2663-2678. https://doi.org/10.1021/ac800473b |
[17] |
Zamarreño, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2011) Optical Fiber pH Sensor Based on Lossy-Mode Resonances by Means of Thin Polymeric Coatings. Sensors and Actuators B, 155, 290-297. https://doi.org/10.1016/j.snb.2010.12.037 |
[18] |
Sanchez, P., Zamarreno, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2013) Considerations for Lossy-Mode Resonance-Based Optical Fiber Sensor. IEEE Sensors Journal, 13, 1167-1171. https://doi.org/10.1109/JSEN.2012.2227717 |
[19] |
Socorro, A.B., Del Villar, I., Corres, J.M., Arregui, F.J. and Matias, I.R. (2011) Influence of Waist Length in Lossy Mode Resonances Generated with Coated Tapered Single-Mode Optical Fibers. IEEE Photonics Technology Letters, 23, 1579-1581. https://doi.org/10.1109/LPT.2011.2164520 |
[20] |
Zhao, M., Wang, J., Zhang, Y., Ge, M., Zhang, P., Shen, J. and Li, C. (2022) Self-Referenced Refractive Index Sensor Based on Double-Dips Method with Bimetal-Dielectric and Double-Groove Grating. Optics Express, 30, 8376-8390. https://doi.org/10.1364/OE.454344 |
[21] |
Wang, Y., Yu, J., Mao, Y, F., Chen, J. and Zhu, J. (2020) Stable, High-Performance Sodium-Based Plasmonic Devices in the Near Infrared. Nature, 581, 401-405. https://doi.org/10.1038/s41586-020-2306-9 |
[22] |
Del Villar, I., Zamarreño, C.R., Hernaez, M., Arregui, F.J. and Matias, I.R. (2010) Generation of Lossy Mode Resonances with Absorbing Thin-Films. Journal of Lightwave Technology, 28, 3351-3357. https://doi.org/10.1109/JLT.2010.2082492 |
[23] |
Ozcariz, A., Dominik, M., Smietana, M., Zamarreño, C.R., Del Villar, I. and Arregui, F.J. (2019) Lossy Mode Resonance Optical Sensors Based on Indium-Gallium-Zinc Oxide Thin Film. Sensors and Actuators A: Physical, 290, 20-27. https://doi.org/10.1016/j.sna.2019.03.010 |
[24] |
Chiavaioli, F., Zubiate, P., Villar, I.D., Zamarreno, C.R. and Baldini, F. (2019) Lossy Mode Resonance Fiber-Optic Biosensing Allowing Ultra-Low Detection Limit. Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, 23-27 June 2019, 1. https://doi.org/10.1109/CLEOE-EQEC.2019.8872284 |
[25] |
Bohorquez, D., Del Villar, I., Corres, J.M. and Matias, I.R. (2021) Wavelength and Intensity Based Lossy Mode Resonance Breathing Sensor. Optics & Laser Technology, 140, Article ID: 107063. https://doi.org/10.1016/j.optlastec.2021.107063 |
[26] |
Zubiate, P., Zamarreño, C.R., Del Villar, I., Matias, I.R. and Arregui, F.J. (2016) Tunable Optical Fiber pH Sensors Based on TE and TM Lossy Mode Resonances (LMRs). Sensors and Actuators B: Chemical, 231, 484-490. https://doi.org/10.1016/j.snb.2016.03.024 |
[27] |
Corres, J.M., Ascorbe, J., Arregui, F.J. and Matias, I.R. (2013) Tunable Electro-Optic Wavelength Filter Based on Lossy-Guided Mode Resonances. Optics Express, 21, 31668-31677. https://doi.org/10.1364/OE.21.031668 |
[28] |
Torres, V., Beruete, M., Sánchez, P. and Del Villar, I. (2016) Indium Tin Oxide Refractometer in the Visible and near Infrared via Lossy Mode and Surface Plasmon Resonances with Kretschmann Configuration. Applied Physics Letters, 108, Article ID: 043507. https://doi.org/10.1063/1.4941077 |
[29] |
Del Villar, I., Zamarreño, C.R., Sanchez, P., Hernaez, M., Valdivielso, C.F., Arregui, F.J. and Matias, I.R. (2010) Generation of Lossy Mode Resonances by Deposition of High-Refractive-Index Coatings on Uncladded Multimode Optical Fibers. Journal of Optics, 12, Article ID: 095503. https://doi.org/10.1088/2040-8978/12/9/095503 |
[30] |
Hernáez, M., Villar, I.D., Zamarreo, C.R., Arregui, F.J. and Matias, I.R. (2010) Optical Fiber Refractometers Based on Lossy Mode Resonances Supported by TiO2 Coatings. Applied Optics, 49, 3980-3985. https://doi.org/10.1364/AO.49.003980 |
[31] |
Lin, Y.-C. and Chen, L.-Y. (2021) Development of a Temperature-Controlled Optical Planar Waveguide Sensor with Lossy Mode Resonance for Refractive Index Measurement. Photonics, 8, Article No. 199. https://doi.org/10.3390/photonics8060199 |
[32] |
Carson, R.F. and Batchman, T.E. (1988) Coupling and Absorption Phenomena in Semiconductor-Clad Dielectric Optical Waveguides. Proceedings of the Integrated Optical Circuit Engineering V, Cambridge, MA. https://doi.org/10.1117/12.942309 |
[33] |
Carson, R.F. and Batchman, T.E. (1990) Multimode Phenomena in Semiconductor-Clad Dielectric Optical Waveguide Structures. Applied Optics, 29, 2769-2780. https://doi.org/10.1364/AO.29.002769 |
[34] |
Marcuse, D.M. (1974) Theory of Dielectric Optical Wave Guides. Academic Press, London. |
[35] |
Samaras, S., Diamantidou, E., Ataloglou, D., Sakellariou, N., Vafeiadis, A., Magoulianitis, V., Lalas, A., Dimou, A., Zarpalas, D., Votis, K., Daras, P. and Tzovaras, D. (2019) Deep Learning on Multi Sensor Data for Counter UAV Applications—A Systematic Review. Sensors (Basel), 19, Article No. 4837. https://doi.org/10.3390/s19224837 |
[36] |
Xu, D., Gao, H., Hou, Z., Zhang, Y., Tong, X., Zhang, Y., Zhang, P., Shen, J. and Li, C. (2022) A High-Sensitivity Fiber-Optic Fabry-Perot Gas Pressure Sensor with Epoxy Resin Adhesive. IEEE Sensors Journal, 22, 10551-10558. https://doi.org/10.1109/JSEN.2022.3168290 |
[37] |
Gao, H., Xu, D., Ye, Y., Zhang, Y., Shen, J. and Li, C. (2022) Fiber-Tip Polymer Filled Probe for High-Sensitivity Temperature Sensing and Polymer Refractometers. Optics Express, 30, 8104-8114. https://doi.org/10.1364/OE.449852 |
[38] |
Gao, H., Wang, J., Shen, J., Zhang, S., Xu, D., Zhang, Y. and Li, C. (2021) Study of the Vernier Effect Based on the Fabry-Perot Interferometer: Methodology and Application. Photonics, 8, Article No. 304. https://doi.org/10.3390/photonics8080304 |
[39] |
Bozzi, M., Georgiadis, A. and Wu, K. (2011) Review of Substrate-Integrated Waveguide Circuits and Antennas. IET Microwaves Antennas & Propagation, 5, 909-920. https://doi.org/10.1049/iet-map.2010.0463 |
[40] |
Hu, J. and Menyuk, C.R. (2009) Understanding Leaky Modes: Slab Waveguide Revisited. Advances in Optics and Photonics, 1, 58-106. https://doi.org/10.1364/AOP.1.000058 |
[41] |
曹庄琪. 导波光学[M]. 北京: 科学出版社, 2007. |
[42] |
Ding, Y. and Magnusson, R. (2004) Resonant Leaky-Mode Spectral-Band Engineering and Device Applications. Optics Express, 12, 5661-5674. https://doi.org/10.1364/OPEX.12.005661 |
[43] |
刘嘉玲. 基于泄漏模波导的模式分辨器[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019. |
[44] |
Marciniak, M., Grzegorzewski, J. and Szustakowski, M. (1993) Analysis of Lossy Mode Cut-Off Conditions in Planar Waveguides with Semiconductor Guiding Layer. IEE Proceedings Journal (Optoelectronics), 140, 247-252. https://doi.org/10.1049/ip-j.1993.0040 |
[45] |
Yang, F. and Sambles, J.R. (1997) Determination of the Optical Permittivity and Thickness of Absorbing Films Using Long Range Modes. Journal of Modern Optics, 44, 1155-1163. https://doi.org/10.1080/09500349708230726 |
[46] |
Kaur, D., Sharma, V.K. and Kapoor, A. (2014) High Sensitivity Lossy Mode Resonance Sensors. Sensors and Actuators B: Chemical, 198, 366-376. https://doi.org/10.1016/j.snb.2014.03.058 |
[47] |
Liu, N., Wang, S., Cheng, Q., Pang, B. and Lv, J. (2021) Two-Dimensional Transition Metal Dichalcogenides-Based High Sensitivity Lossy Mode Refractive Index Sensor. IEEE Sensors Journal, 21, 6043-6049. https://doi.org/10.1109/JSEN.2020.3042470 |
[48] |
Qiu, C., Gan, S., Xiang, Y. and Dai, X. (2020) High Figure of Merit in Lossy Mode Resonance Sensors with PtSe2 Thin Film. Plasmonics, 16, 729-735. https://doi.org/10.1007/s11468-020-01337-x |
[49] |
Letko, E., Bundulis, A. and Mozolevskis, G. (2022) Theoretical Development of Polymer-Based Integrated Lossy-Mode Resonance Sensor for Photonic Integrated Circuits. Photonics, 9, Article No. 764. https://doi.org/10.3390/photonics9100764 |
[50] |
Kumar, A., Sharma, V.K., Kumar, D. and Kapoor, A. (2013) Integrated Optic TE/TM Pass Polarizers Using Resonant Coupling between ITO Thin Film Lossy Modes and Dielectric Waveguide Modes. Optics Communications, 291, 247-252. https://doi.org/10.1016/j.optcom.2012.10.022 |
[51] |
Batchman, T.E. and Mcwright, G.M. (1982) Mode Coupling between Dielectric and Semiconductor Planar Waveguides. IEEE Journal of Quantum Electronics, 18, 628-634. https://doi.org/10.1109/TMTT.1982.1131108 |
[52] |
Batchman, T. and Rashleigh, S. (1972) Mode-Selective Properties of a Metal-Clad-Dielectric-Slab Waveguide for Integrated Optics. IEEE Journal of Quantum Electronics, 8, 848-850. https://doi.org/10.1109/JQE.1972.1076873 |
[53] |
Takano, T. and Hamasaki, J. (1972) Propagating Modes of a Metal-Clad-Dielectric-Slab Waveguide for Integrated Optics. IEEE Journal of Quantum Electronics, 8, 206-212. https://doi.org/10.1109/JQE.1972.1076923 |
[54] |
Polky, J.N. and Mitchell, G.L. (1974) Metal-Clad Planar Dielectric Waveguide for Integrated Optics. Journal of the Optical Society of America, 64, 274-279. https://doi.org/10.1364/JOSA.64.000274 |
[55] |
Kaminow, I.P., Mammel, W.L. and Weber, H.P. (1974) Metal-Clad Optical Waveguides: Analytical and Experimental Study. Applied Optics, 13, 396-405. https://doi.org/10.1364/AO.13.000396 |
[56] |
Yamamoto, Y., Kamiya, T. and Yanai, H. (1975) Propagation Characteristics of a Partially Metal-Clad Optical Guide: Metal-Clad Optical Strip Line. Applied Optics, 14, 322-326. https://doi.org/10.1364/AO.14.000322 |
[57] |
Rashleigh, S.C. (1976) Four-Layer Metal-Clad Thin Film Optical Waveguides. Optical & Quantum Electronics, 8, 49-60. https://doi.org/10.1007/BF00620440 |
[58] |
Fink, H.J. (1976) Propagation of Waves in Optical Waveguides with Various Dielectric and Metallic Claddings. IEEE Journal of Quantum Electronics, 12, 365-367. https://doi.org/10.1109/JQE.1976.1069165 |
[59] |
Hulse, C.A. and Knoesen, A. (1992) Iterative Calculation of Complex Propagation Constants of Modes in Multilayer Planar Waveguides. IEEE Journal of Quantum Electronics, 28, 2682-2684. https://doi.org/10.1109/3.166459 |
[60] |
Andreev, A., Pantchev, B., Danesh, P., Zafirova, B., Karakoleva, E., Vlaikova, E. and Alipieva, E. (2005) A Refractometric Sensor Using Index-Sensitive Mode Resonance between Single-Mode Fiber and Thin Film Amorphous Silicon Waveguide. Sensors and Actuators B: Chemical, 106, 484-488. https://doi.org/10.1016/j.snb.2004.09.002 |
[61] |
Razansky, D., Einziger, P.D. and Adam, D.R. (2005) Broadband Absorption Spectroscopy via Excitation of Lossy Resonance Modes in Thin Films. Physical Review Letters, 95, Article ID: 018101. https://doi.org/10.1103/PhysRevLett.95.018101 |
[62] |
Andreev, A.T., Zafirova, B.S., Karakoleva, E.I., Dikovska, A.O. and Atanasov, P.A. (2008) Highly Sensitive Refractometers Based on a Side-Polished Single-Mode Fibre Coupled with a Metal Oxide Thin-Film Planar Waveguide. Journal of Optics A Pure & Applied Optics, 10, Article ID: 035303. https://doi.org/10.1088/1464-4258/10/3/035303 |
[63] |
Zamarreo, C.R., Hernaez, M., Sánchez, P., Villar, I.D. and Arregui, F.J. (2011) Optical Fiber Humidity Sensor Based on Lossy Mode Resonances Supported by TiO2/PSS Coatings. Procedia Engineering, 25, 1385-1388. https://doi.org/10.1016/j.proeng.2011.12.342 |
[64] |
Kaur, D., Sharma, V.K. and Kapoor, A. (2015) Effect of Prism Index on Sensitivity of Lossy Mode Resonance Sensors Operating in Visible Region. Journal of Nanophotonics, 9, Article ID: 093042. https://doi.org/10.1117/1.JNP.9.093042 |
[65] |
Zubiate, P., Zamarreño, C.R., Sánchez, P., Matias, I.R. and Arregui, F.J. (2017) High Sensitive and Selective C-Reactive Protein Detection by Means of Lossy Mode Resonance Based Optical Fiber Devices. Biosensors & Bioelectronics, 93, 176-181. https://doi.org/10.1016/j.bios.2016.09.020 |
[66] |
Dreyer, U.J., Ozcariz, A., Ascorbe, J., Zubiate, P., Vitoria, I., Martelli, C., Da Silva, J.C.C. and Zamarreño, C.R. (2018) Gas Detection Using LMR-Based Optical Fiber Sensors. Proceedings, 2, Article No. 890. https://doi.org/10.3390/proceedings2130890 |
[67] |
Hernaez, M., Mayes, A.G. and Melendi-Espina, S. (2018) Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection. Sensors, 18, Article No. 58. https://doi.org/10.3390/s18010058 |
[68] |
Saini, R., Kumar, A., Bhatt, G., Kapoor, A., Paliwal, A., Tomar, M. and Gupta, V. (2019) Lossy Mode Resonance-Based Refractive Index Sensor for Sucrose Concentration Measurement. IEEE Sensors Journal, 20, 1217-1222. https://doi.org/10.1109/JSEN.2019.2946760 |
[69] |
Dai, X., Chen, H., Qiu, C., Wu, L. and Xiang, Y. (2020) Ultrasensitive Multiple Guided-Mode Biosensor with Few-Layer Black Phosphorus. Journal of Lightwave Technology, 38, 1564-1571. https://doi.org/10.1109/JLT.2019.2954168 |
[70] |
Zhao, Y., Wu, L., Gan, S., Ruan, B., Zhu, J., Dai, X. and Xiang, Y. (2018) High Figure of Merit Lossy Mode Resonance Sensor with Graphene. Plasmonics, 14, 929-934. https://doi.org/10.1007/s11468-018-0876-2 |
[71] |
Otto, A. (1968) Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift für Physik A Hadrons and Nuclei, 216, 398-410. https://doi.org/10.1007/BF01391532 |
[72] |
Kretschmann, E. and Raether, H. (1968) Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A, 23, 2135-2136. https://doi.org/10.1515/zna-1968-1247 |
[73] |
Villar, I.D., Zamarreo, C.R., Sánchez, P., Hernaez, M. and Matias, I.R. (2010) Generation of Lossy Mode Resonances by Deposition of High-Refractive-Index Coatings on Uncladded Multimode Optical Fibers. Journal of Instrumentation, 12, Article ID: 095503. https://doi.org/10.1088/2040-8978/12/9/095503 |
[74] |
Zamarreno, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2009) ITO Coated Optical Fiber Refractometers Based on Resonances in the Infrared Region. IEEE Sensors Journal, 10, 365-366. https://doi.org/10.1109/JSEN.2009.2034628 |
[75] |
Zhang, Y., Zhang, P., Zhao, M., Xu, D., Wang, J., Li, Z., Tang, T., Shen, J. and Li, C. (2022) A High Sensitivity Lossy Mode Resonance Refractive Index Sensor Based on SBS Structure. Results in Physics, 36, Article ID: 105454. https://doi.org/10.1016/j.rinp.2022.105454 |
[76] |
Paliwal, N. and John, J. (2014) Theoretical Modelling of Lossy Mode Resonance (LMR)Based Fiber Optic Temperature Sensor Utilizing TiO2 Sensing Layer. 12th International Conference on Fiber Optics and Photonics, Kharagpur, 13-16 December 2014, M4A.22. https://doi.org/10.1364/PHOTONICS.2014.M4A.22 |
[77] |
Hernaez, M., Zamarreno, C.R., Fernandez-Valdivielso, C., Villar, I.D., Arregui, F.J. and Matias, I.R. (2010) Agarose Optical Fibre Humidity Sensor Based on Electromagnetic Resonance in the Infra-Red Region. Physica Status Solidi, 7, 2767-2769. https://doi.org/10.1002/pssc.200983815 |
[78] |
Zamarreno, C.R., Hernaez, M., Del Villar, I., Matias, I.R. and Arregui, F.J. (2010) Tunable Humidity Sensor Based on ITO-Coated Optical Fiber. Sensors and Actuators B: Chemical, 146, 414-417. https://doi.org/10.1016/j.snb.2010.02.029 |
[79] |
Dikovska, A.O., et al. (2010) Optical Sensing of Ammonia Using ZnO Nanostructure Grown on a Side-Polished Optical-Fiber. Sensors and Actuators B: Chemical, 146, 331-336. https://doi.org/10.1016/j.snb.2010.02.018 |
[80] |
Razquin, L., Zamarreno, C.R., Munoz, F.J., Matias, I.R. and Arregui, F.J. (2012) Thrombin Detection by Means of an Aptamer Based Sensitive Coating Fabricated onto LMR-Based Optical Fiber Refractometer. Proceedings of the Sensors, Taipei, 28-31 October 2012, 1-4. https://doi.org/10.1109/ICSENS.2012.6411186 |
[81] |
Zamarreno, C.R., Ardaiz, I., Ruete, L., Munoz, F.J. and Arregui, F.J. (2013) C-Reactive Protein Aptasensor for Early Sepsis Diagnosis by Means of an Optical Fiber Device. Proceedings of the Sensors, Baltimore, 3-6 November 2013, 1-4. https://doi.org/10.1109/ICSENS.2013.6688222 |