[1] |
Lenton, T.M., Xu, C., Abrams, J.F., Ghadiali, A., Loriani, S., Sakschewski, B., Zimm, C., Ebi, K.L., Dunn, R.R., Svenning, J.-C. and Scheffer, M. (2023) Quantifying the Human Cost of Global Warming.Nature Sustainability, 6, 1237-1247. https://doi.org/10.1038/s41893-023-01132-6 |
[2] |
Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological Responses to Recent Climate Change.Nature, 416, 389-395. https://doi.org/10.1038/416389a |
[3] |
Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C. and Finnegan, S. (2013) Climate Change and the Past, Present, and Future of Biotic Interactions.Science, 341, 499-504. https://doi.org/10.1126/science.1237184 |
[4] |
Parmesan, C. (1996) Climate and Species’ Range.Nature, 382, 765-766. https://doi.org/10.1038/382765a0 |
[5] |
Chen, I., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of Species Associated with High Levels of Climate Warming.Science, 333, 1024-1026. https://doi.org/10.1126/science.1206432 |
[6] |
IPCC (2022) Climate Change 2022: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[7] |
Tian, L. and Benton, M.J. (2020) Predicting Biotic Responses to Future Climate Warming with Classic Ecogeographic Rules.Current Biology, 30, R744-R749. https://doi.org/10.1016/j.cub.2020.06.003 |
[8] |
Sheridan, J.A. and Bickford, D. (2011) Shrinking Body Size as an Ecological Response to Climate Change.Nature Climate Change, 1, 401-406. https://doi.org/10.1038/nclimate1259 |
[9] |
Leiva, F.P., Calosi, P. and Verberk, W.C.E.P. (2019) Scaling of Thermal Tolerance with Body Mass and Genome Size in Ectotherms: A Comparison between Water-and Air-Breathers.Philosophical Transactions of the Royal Society B:Biological Sciences, 374, Article 20190035. https://doi.org/10.1098/rstb.2019.0035 |
[10] |
Solokas, M.A., Feiner, Z.S., Al Chokachy, R., Budy, P., Deweber, J.T., Sarvala, J., Sass, G.G., Tolentino, S.A., Walsworth, T.E. and Jensen, O.P. (2023) Shrinking Body Size and Climate Warming: Many Freshwater Salmonids Do Not Follow the Rule.Global Change Biology, 29, 2478-2492. https://doi.org/10.1111/gcb.16626 |
[11] |
Belk, M.C. and Houston, D.D. (2002) Bergmann’s Rule in Ectotherms: A Test Using Freshwater Fishes.American Naturalists, 160, 803-808. https://doi.org/10.1086/343880 |
[12] |
Fernández-Torres, F., Martínez, P.A. and Olalla-Tárraga, M.Á. (2018) Shallow Water Ray-Finned Marine Fishes Follow Bergmann’s Rule.Basic and Applied Ecology, 33, 99-110. https://doi.org/10.1016/j.baae.2018.09.002 |
[13] |
Saunders, R.A. and Tarling, G.A. (2018) Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule.The American Naturalist, 191, 343-351. https://doi.org/10.1086/695767 |
[14] |
Fisher, J.A., Frank, K.T. and Leggett, W.C. (2010) Breaking Bergmann’s Rule: Truncation of Northwest Atlantic Marine Fish Body Sizes.Ecology, 91, 2499-2505. https://doi.org/10.1890/09-1914.1 |
[15] |
张登成, 熊文, 陶捐, 陈毅峰. 武汉地区西部食蚊鱼的生长、死亡系数及种群补充模式[J]. 生态学报, 2016, 36(2): 508-517. |
[16] |
陈银瑞, 宇和纮, 褚新洛. 云南青鳉鱼类的分类和分布(鳉形目: 青鳉科) [J]. 动物分类学报, 1989(2): 239-246. |
[17] |
陈国柱. 入侵种食蚊鱼与土著濒危物种唐鱼的种间关系研究[D]: [博士学位论文]. 广州: 暨南大学, 2010. |
[18] |
Vondracek, B., Wurtsbaugh, W.A. and Cech, J.J. (1988) Growth and Reproduction of the Mosquitofish,Gambusia affinis, in Relation to Temperature and Ration Level: Consequences for Life History.Environmental Biology of Fishes, 21, 45-57. https://doi.org/10.1007/BF02984442 |
[19] |
Pyke, G.H. (2005) A Review of the Biology ofGambusia affinisandG.holbrooki.Reviews in Fish Biology and Fisheries, 15, 339-365. https://doi.org/10.1007/s11160-006-6394-x |
[20] |
肖乔芝, 陈利娟, 金锦锦, 仇玉萍, 陈国柱. 青鳉与食蚊鱼竞争排斥的生态形态学解释[J]. 应用生态学报, 2020, 31(6): 2087-2097. |
[21] |
Pan, J.H., Su, B.Z. and Zheng, W.B. (1980) Biological Characteristics ofGambusia affinisand the Prospects for Its Use for Mosquito Control.Journal of South China Normal University, 1, 117-138. |
[22] |
Krumholz, L.A. (1948) Reproduction in the Western Mosquitofish,Gambusia affinis affinis(Baird & Girard), and Its Use in Mosquito Control.Ecological Monographs, 18, 1-43. https://doi.org/10.2307/1948627 |
[23] |
严云志, 陈毅峰, 陶捐. 食蚊鱼生态入侵的研究进展[J]. 生态学杂志, 2009, 28(5): 950-958. |
[24] |
Blackburn, T.M., Gaston, K.J. and Loder, N. (1999) Geographic Gradients in Body Size: A Clarification of Bergmann’s Rule.Diversity and Distributions, 5, 165-174. https://doi.org/10.1046/j.1472-4642.1999.00046.x |
[25] |
Meiri, S. and Dayan, T. (2003) On the Validity of Bergmann’s Rule.Journal of Biogeography, 30, 331-351. https://doi.org/10.1046/j.1365-2699.2003.00837.x |
[26] |
汪国静. 不同增温情景下西部食蚊鱼的生长、繁殖与死亡特征研究[D]: [硕士学位论文]. 昆明: 云南大学, 2022. |
[27] |
Atkinson, D. (1994) Temperature and Organism Size—A Biological Law for Ectotherms?Advances in Ecological Research, 25, 1-58. https://doi.org/10.1016/S0065-2504(08)60212-3 |
[28] |
Botsford, L.W., Vondracek, B., Wainwright, T.C., Linden, A.L., Kope, R.G., Reed, D.E. and Cech, J.J. (1987) Population Development of the Mosquitofish,Gambusia affinis, in Rice Fields.Environmental Biology of Fishes, 20, 143-154. https://doi.org/10.1007/BF00005293 |
[29] |
Wootton, H.F., Morrongiello, J.R. and Audzijonyte, A. (2020) Estimating Maturity from Size-at-Age Data: Are Real-World Fisheries Datasets up to the Task?Reviews in Fish Biology and Fisheries, 30, 681-697. https://doi.org/10.1007/s11160-020-09617-9 |
[30] |
Polidori, C., Gutiérrez Cánovas, C., Sánchez, E., Tormos, J., Castro, L. and Sánchez Fernández, D. (2020) Climate Change-Driven Body Size Shrinking in a Social Wasp.Ecological Entomology, 45, 130-141. https://doi.org/10.1111/een.12781 |
[31] |
胡玲红, 王映, 王化敏, 陈良标. 不同温度胁迫对青鳉鳃凋亡的影响[J]. 大连海洋大学学报, 2021, 36(6): 929-936. |
[32] |
王润萍, 戴铃灵, 陈雅飞, 徐永健. 短期温度、盐度胁迫对海洋青鳉鱼(Oryzias melastigma)摄食行为及抗氧化的影响[J]. 海洋与湖沼, 2019, 50(2): 378-387. |
[33] |
周龙艳. 长江流域几种珍稀鱼类对环境因子胁迫的生理与行为响应研究[D]: [硕士学位论文]. 重庆: 重庆师范大学, 2021. |