[1] |
Barthwal, S., Singh, S., Chauhan, A.K.,et al. (2023) Design and Simulation of CdS-Free Sb2(S, Se)3Solar Cells with Efficiency Exceeding 20%.ACS Sustainable Chemistry & Engineering, 12, 947-958. https://doi.org/10.1021/acssuschemeng.3c06210 |
[2] |
Luo, D.Y., Su, R., Zhang, W.,et al. (2020) Minimizing Non-Radiative Recombination Losses in Perovskite Solar Cells.Nature Reviews Materials, 5, 44-60. https://doi.org/10.1038/s41578-019-0151-y |
[3] |
Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization.Proceedings of the National Academy of Sciences, 103, 15729-15735. https://doi.org/10.1073/pnas.0603395103 |
[4] |
Tang, R.F., Wang, X.M., Lian, W.T.,et al. (2020) Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency.Nature Energy, 5, 587-595. https://doi.org/10.1038/s41560-020-0652-3 |
[5] |
Ma, Y.Y., Tang, B.B., Lian, W.T.,et al. (2020) Efficient Defect Passivation of Sb2Se3Film by Tellurium Doping for High Performance Solar Cells.Journal of Materials Chemistry A, 8, 6510-6516. https://doi.org/10.1039/D0TA00443J |
[6] |
Chen, J.W., Li, G.Y., Xu, Z.H.,et al. (2024) Recent Advances and Prospects of Solution-Processed Efficient Sb2S3Solar Cells.Advanced Functional Materials, 34, Article 2313676. https://doi.org/10.1002/adfm.202313676 |
[7] |
Choi, Y.C., Lee, D.U., Noh, J.H.,et al. (2014) Highly Improved Sb2S3Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy.Advanced Functional Materials, 24, 3587-3892. https://doi.org/10.1002/adfm.201304238 |
[8] |
Dhakras, P.A., Comfort, E. and Lee, J.U. (2019) Ideal p-n Diodes from Single-Walled Carbon Nanotubes for Use in Solar Cells: Beating the Detailed Balance Limit of Efficiency.ACS Applied Nano Materials, 2, 7496-7502. https://doi.org/10.1021/acsanm.9b01424 |
[9] |
Lu, L., Tan, R.F., Chen, D.F.,et al. (2019) Surface Plasmon Assisted Laser Ablation of Stainless Steel.Nanotechnology, 30, Article 305401. https://doi.org/10.1088/1361-6528/ab1806 |
[10] |
Cheng, Y., Chen, C., Chen, X.,et al. (2017) Considerably Enhanced Perovskite Solar Cells via the Introduction of Metallic Nanostructures.Journal of Materials Chemistry A, 5, 6515-6521. https://doi.org/10.1039/C6TA10715J |
[11] |
Wang, J.Y., Hsu, F.C., Huang, J.Y.,et al. (2015) Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.ACS Applied Materials & Interfaces, 7, 27676-27684. https://doi.org/10.1021/acsami.5b08157 |
[12] |
Lee, D.S., Kim, W., Cha, B.G.,et al. (2016) Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution.ACS Applied Materials & Interfaces, 8, 449-454. https://doi.org/10.1021/acsami.5b09365 |
[13] |
Spinelli, P., Hebbink, M., De Waele, R.,et al. (2011) Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays.Nano Letters, 11, 1760-1765. https://doi.org/10.1021/nl200321u |
[14] |
Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices.Nature Materials, 9, 205-213. https://doi.org/10.1038/nmat2629 |
[15] |
Mertz, J. (2000) Radiative Absorption, Fluorescence, and Scattering of a Classical Dipole near a Lossless Interface: A Unified Description.Journal of the Optical Society of America B, 17, 1906-1913. https://doi.org/10.1364/JOSAB.17.001906 |
[16] |
Zubko, E., Kimura, H., Shkuratov, Y.,et al. (2009) Effect of Absorption on Light Scattering by Agglomerated Debris Particles.Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1741-1749. https://doi.org/10.1016/j.jqsrt.2008.12.006 |
[17] |
Im, J.-H., Kim, H.-S. and Park, N.-G. (2014) Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step versus Two-Step Deposition of CH3NH3PbI3.APL Materials, 2, Article 081510. https://doi.org/10.1063/1.4891275 |
[18] |
Yu, Y.T., Zhang, Q.H. and Xu, B.Q. (2004) Shape-Controlled Syntheses of Metal Nanoparticles.Progress in Chemistry, 16, 520-527. |
[19] |
Jang, T., Youn, H., Shin, Y.J.,et al. (2014) Transparent and Flexible Polarization-Independent Microwave Broadband Absorber.ACS Photonics, 1, 279-284. https://doi.org/10.1021/ph400172u |
[20] |
Wu, Y.Z., Ren, S.M., Xu, X.L.,et al. (2014) Engineered Fluorescence of Quantum Dots via Plasmonic Nanostructures.Solar Energy Materials and Solar Cells, 126, 113-119. https://doi.org/10.1016/j.solmat.2014.03.050 |
[21] |
Lu, L., Zeng, W.Q., Hu, S.S.,et al. (2018) Polarization-Dependent Fluorescence of CdSe/ZnS Quantum Dots Coupling to a Single Gold-Silver Alloy Nanotube.Journal of Alloys and Compounds, 731, 753-759. https://doi.org/10.1016/j.jallcom.2017.10.053 |
[22] |
Li, Z.Q., Liang, X.Y., Li, G.,et al. (2019) 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells.Nature Communications, 10, Article No. 125. https://doi.org/10.1038/s41467-018-07903-6 |