[1] |
Wang, L., Zhang, K., Zeng, Y., et al. (2023) Gut Mycobiome and Metabolic Diseases: The Known, the Unknown, and the Future. Pharmacological Research, 193, Article ID: 106807. https://doi.org/10.1016/j.phrs.2023.106807 |
[2] |
Tripathi, A., Debelius, J., Brenner, D.A., et al. (2018) The Gut-Liver Axis and the Intersection with the Microbiome. Nature Reviews Gastroenterology & Hepatology, 15, 397-411. https://doi.org/10.1038/s41575-018-0011-z |
[3] |
杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563. |
[4] |
Bajinka, O., Tan, Y., Darboe, A., et al. (2023) The Gut Microbiota Pathway Mechanisms of Diabetes. AMB Express, 13, Article No. 16. https://doi.org/10.1186/s13568-023-01520-3 |
[5] |
Cao, H., Zhu, Y., Hu, G., et al. (2023) Gut Microbiome and Metabolites, the Future Direction of Diagnosis and Treatment of Atherosclerosis? Pharmacological Research, 187, Article ID: 106586. https://doi.org/10.1016/j.phrs.2022.106586 |
[6] |
Zhang, Q., Zhang, L., Chen, C., et al. (2023) The Gut Microbiota-Artery Axis: A Bridge between Dietary Lipids and Atherosclerosis? Progress in Lipid Research, 89, Article ID: 101209. https://doi.org/10.1016/j.plipres.2022.101209 |
[7] |
Julian, R.M., David, H.A., Francesca, F., et al. (2016) The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339. https://doi.org/10.1136/gutjnl-2015-309990 |
[8] |
Isabel, M., Lidia, S., Pablo, P., et al. (2016) Red Wine Polyphenols Modulate Fecal Microbiota and Reduce Markers of the Metabolic Syndrome in Obese Patients. Food & Function, 7, 1775-1787. https://doi.org/10.1039/C5FO00886G |
[9] |
Kwok, L.Y., Menghe, B., Shang, Y.N., et al. (2017) Effects of Microencapsulated Lactobacillus Plantarum LIP-1 on the Gut Microbiota of Hyperlipidaemic Rats. British Journal of Nutrition, 118, 481-492. https://doi.org/10.1017/S0007114517002380 |
[10] |
Britta, B., Janaki, G., Maria, K., et al. (2004) Gnotobiotic Transgenic Mice Reveal That Transmission of Helicobacter Pylori Is Facilitated by Loss of Acid-Producing Parietal Cells in Donors and Recipients. Microbes and Infection, 6, 213-220. https://doi.org/10.1016/j.micinf.2003.11.008 |
[11] |
Rawls, J.F., Mahowald, M.A., Ley, R.E., et al. (2006) Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-Free Recipients Reveal Host Habitat Selection. Cell, 127, 423-433. https://doi.org/10.1016/j.cell.2006.08.043 |
[12] |
Kau, A., Planer, J., Rao, S., et al. (2013) Immunoglobulin a Targets Microbes in the Fecal Microbiota of Malawian Twins Discordant for Kwashiorkor. Journal of Allergy and Clinical Immunology, 131, AB330. https://doi.org/10.1016/j.jaci.2012.12.1556 |
[13] |
Liu, R., Hong, J., Xu, X., et al. (2017) Gut Microbiome and Serum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868. https://doi.org/10.1038/nm.4358 |
[14] |
Bereswill, S., Larsen, N., Vogensen, F.K., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE, 5, e9085. https://doi.org/10.1371/journal.pone.0009085 |
[15] |
Allin, K.H., Tremaroli, V., Caesar, R., et al. (2018) Aberrant Intestinal Microbiota in Individuals with Prediabetes. Diabetologia, 61, 810-820. https://doi.org/10.1007/s00125-018-4550-1 |
[16] |
Ma, Q., Li, Y., Li, P., et al. (2019) Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138. https://doi.org/10.1016/j.biopha.2019.109138 |
[17] |
Koren, O., Spor, A., Felin, J., et al. (2010) Human Oral, Gut, and Plaque Microbiota in Patients with Atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 108, 4592-4598. https://doi.org/10.1073/pnas.1011383107 |
[18] |
Verhaar, B.J.H., Prodan, A., Nieuwdorp, M., et al. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article 2982. https://doi.org/10.3390/nu12102982 |
[19] |
Zhu, W., Gregory, J.C., Org, E., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124. https://doi.org/10.1016/j.cell.2016.02.011 |
[20] |
Wang, Z., Klipfell, E., Bennett, B.J., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63. https://doi.org/10.1038/nature09922 |
[21] |
Liu, S., He, F., Zheng, T., et al. (2021) Ligustrum Robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Molecular Nutrition & Food Research, 65, e2100014. https://doi.org/10.1002/mnfr.202100014 |
[22] |
王诗, 李杰, 刘垠杏, 等. 基于小肠黏膜菌群及肠紧密连接探讨养心通脉方对冠心病血瘀证大鼠的作用机制[J]. 中国中医药信息杂志, 2022, 29(8): 85-92. |
[23] |
Oriol, J., Sebastian, M., Ruben, F., et al. (2021) Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. International Journal of Environmental Research and Public Health, 18, Article 5227. https://doi.org/10.3390/ijerph18105227 |
[24] |
Chopyk, D.M. and Grakoui, A. (2020) Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology, 159, 849-863. https://doi.org/10.1053/j.gastro.2020.04.077 |
[25] |
Zhu, L., Baker, S.S., Gill, C., et al. (2013) Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology, 57, 601-609. https://doi.org/10.1002/hep.26093 |
[26] |
Jiang, S., ShuiI, Y., Cui, Y., et al. (2021) Gut Microbiota Dependent Trimethylamine N-Oxide Aggravates Angiotensin II-Induced Hypertension. Redox Biology, 46, Article ID: 102115. https://doi.org/10.1016/j.redox.2021.102115 |
[27] |
Ma, J.L. and Li, H.K. (2018) The Role of Gut Microbiota in Atherosclerosis and Hypertension. Frontiers in Pharmacology, 9, Article 1082. https://doi.org/10.3389/fphar.2018.01082 |
[28] |
Ma, G., Pan, B., Chen, Y., et al. (2017) Trimethylamine N-Oxide in Atherogenesis: Impairing Endothelial Self-Repair Capacity and Enhancing Monocyte Adhesion. Bioscience Reports, 37, BSR20160244. https://doi.org/10.1042/BSR20160244 |
[29] |
Marina, C., Melania, P., Noemí, R., et al. (2022) TMAO and Gut Microbial-Derived Metabolites TML and γBB Are Not Associated with Thrombotic Risk in Patients with Venous Thromboembolism. Journal of Clinical Medicine, 11, Article 1425. https://doi.org/10.3390/jcm11051425 |
[30] |
Xiong, R.G., Zhou, D.D., Wu, S.X., et al. (2022) Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11, Article 2863. https://doi.org/10.3390/foods11182863 |
[31] |
Miyamoto, J., Kasubuchi, M., Nakajima, A., et al. (2016) The Role of Short-Chain Fatty Acid on Blood Pressure Regulation. Current Opinion in Nephrology and Hypertension, 25, 379-383. https://doi.org/10.1097/MNH.0000000000000246 |
[32] |
Chen, Y., Xu, C., Huang, R., et al. (2018) Butyrate from Pectin Fermentation Inhibits Intestinal Cholesterol Absorption and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. The Journal of Nutritional Biochemistry, 56, 175-182. https://doi.org/10.1016/j.jnutbio.2018.02.011 |
[33] |
Haghikia, A., Zimmermann, F., Schumann, P., et al. (2022) Propionate Attenuates Atherosclerosis by Immune-Dependent Regulation of Intestinal Cholesterol Metabolism. European Heart Journal, 43, 518-533. https://doi.org/10.1093/eurheartj/ehab644 |
[34] |
Sahuri-Arisoylu, M., Brody, L.P., Parkinson, J.R., et al. (2016) Reprogramming of Hepatic Fat Accumulation and ‘Browning’ of Adipose Tissue by the Short-Chain Fatty Acid Acetate. International Journal of Obesity, 40, 955-963. https://doi.org/10.1038/ijo.2016.23 |
[35] |
Zhao, Y., Liu, J., Hao, W., et al. (2017) Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. Journal of Agricultural and Food Chemistry, 65, 10984-10992. https://doi.org/10.1021/acs.jafc.7b04666 |
[36] |
Sah, D.K., Arjunan, A., Park, S.Y. and Jung, Y.D. (2022) Bile Acids and Microbes in Metabolic Disease. World Journal of Gastroenterology, 28, 6846-6866. https://doi.org/10.3748/wjg.v28.i48.6846 |
[37] |
Guan, B., Tong, J., Hao, H., et al. (2022) Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharmaceutica Sinica B, 12, 2129-2149. https://doi.org/10.1016/j.apsb.2021.12.011 |
[38] |
Pathak, P., Xie, C., Nichols, R.G., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. https://doi.org/10.1002/hep.29857 |
[39] |
Yang, L., Xie, X., Li, Y., et al. (2021) Evaluation of the Cholesterol-Lowering Mechanism of Enterococcus Faecium Strain 132 and Lactobacillus Paracasei Strain 201 in Hypercholesterolemia Rats. Nutrients, 13, Article 1982. https://doi.org/10.3390/nu13061982 |
[40] |
Zhu, Y., Li, T., Din, A.U., et al. (2019) Beneficial Effects of Enterococcus Faecalis in Hypercholesterolemic Mice on Cholesterol Transportation and Gut Microbiota. Applied Microbiology and Biotechnology, 103, 3181-3191. https://doi.org/10.1007/s00253-019-09681-7 |
[41] |
Lee, S.M., Ahn, Y.M., Park, S.H., et al. (2023) Reshaping the Gut Microbiome and Bile Acid Composition by Gyejibongnyeong-Hwan Ameliorates Western Diet-Induced Dyslipidemia. Biomedicine & Pharmacotherapy, 163, Article ID: 114826. https://doi.org/10.1016/j.biopha.2023.114826 |
[42] |
Liu, B.N., Liu, X.T., Liang, Z.H., et al. (2021) Gut Microbiota in Obesity. World Journal of Gastroenterology, 27, 3837-3850. https://doi.org/10.3748/wjg.v27.i25.3837 |
[43] |
Silbernauer, C.J., Syrina-Baumgartner, D.M., Arnold, M., et al. (2000) Prandial Lactate Infusion Inhibits Spontaneous Feeding in Rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278, R646-R653. https://doi.org/10.1152/ajpregu.2000.278.3.R646 |
[44] |
Harsch, I.A. and Konturek, P.C. (2018) The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into “Old” Diseases. Medical Sciences, 6, Article 32. https://doi.org/10.3390/medsci6020032 |
[45] |
Chu, F., Shi, M., Lang, Y., et al. (2018) Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators of Inflammation, 2018, Article ID: 8168717. https://doi.org/10.1155/2018/8168717 |
[46] |
Kang, C., Wang, B., Kaliannan, K., et al. (2017) Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio, 8, e00900-17. https://doi.org/10.1128/mBio.00470-17 |
[47] |
Khan, M.J., Gerasimidis, K., Edwards, C.A., et al. (2016) Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity, 2016, Article ID: 7353642. https://doi.org/10.1155/2016/7353642 |
[48] |
Kimura, I., Ozawa, K., Inoue, D., et al. (2013) The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43. Nature Communications, 4, Article No. 1829. https://doi.org/10.1038/ncomms2852 |
[49] |
Lundåsen, T., Andersson, E.M., Snaith, M., et al. (2012) Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice. PLOS ONE, 7, e37787. https://doi.org/10.1371/journal.pone.0037787 |
[50] |
Zhang, W.Q., Zhao, T.T., Gui, D.K., et al. (2019) Sodium Butyrate Improves Liver Glycogen Metabolism in Type 2 Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 67, 7694-7705. https://doi.org/10.1021/acs.jafc.9b02083 |
[51] |
Zhang, Q., Ni, Y.Q., Qian, L.L., et al. (2021) Decreased Abundance of Akkermansiamuciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 8, e2100536. https://doi.org/10.1002/advs.202100536 |
[52] |
Zhang, Y., Gu, Y., Chen, Y., et al. (2021) Dingxin Recipe IV Attenuates Atherosclerosis by Regulating Lipid Metabolism Through LXR-α/SREBP1 Pathway and Modulating the Gut Microbiota in ApoE-/- Mice Fed with HFD. Journal of Ethnopharmacology, 266, Article ID: 113436. https://doi.org/10.1016/j.jep.2020.113436 |
[53] |
Sheng, Y., Meng, G., Zhou, Z., et al. (2023) PARP-1 Inhibitor Alleviates Liver Lipid Accumulation of Atherosclerosis via Modulating Bile Acid Metabolism and Gut Microbes. Molecular Omics, 19, 560-573. https://doi.org/10.1039/D3MO00033H |
[54] |
Du, Y., Li, X., Su, C., et al. (2020) Butyrate Protects against High-Fat Diet-Induced Atherosclerosis via Up-Regulating ABCA1 Expression in Apolipoprotein E-Deficiency Mice. British Journal of Pharmacology, 177, 1754-1772. https://doi.org/10.1111/bph.14933 |
[55] |
Wu, Q., Sun, L., Hu, X., et al. (2021) Suppressing the Intestinal Farnesoid X Receptor/Sphingomyelin Phosphodiesterase 3 Axis Decreases Atherosclerosis. The Journal of Clinical Investigation, 131, e142865. https://doi.org/10.1172/JCI142865 |
[56] |
Yu, X., Ding, X., Feng, H., et al. (2023) Excessive Exogenous Cholesterol Activating Intestinal LXRα-ABCA1/G5/G8 Signaling Pathway Can Not Reverse Atherosclerosis in ApoE-/- Mice. Lipids in Health and Disease, 22, Article No. 51. https://doi.org/10.1186/s12944-023-01810-6 |
[57] |
Ji, Y., Yin, Y., Li, Z., et al. (2019) Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 11, Article 1712. https://doi.org/10.3390/nu11081712 |
[58] |
Ye, J., Lv, L., Wu, W., et al. (2018) Butyrate Protects Mice against Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Frontiers in Microbiology, 9, Article 1967. https://doi.org/10.3389/fmicb.2018.01967 |
[59] |
Luo, Y., Yang, S., Wu, X., et al. (2021) Intestinal MYC Modulates Obesity-Related Metabolic Dysfunction. Nature Metabolism, 3, 923-939. https://doi.org/10.1038/s42255-021-00421-8 |
[60] |
Yan, T., Luo, Y., Yan, N., et al. (2023) Intestinal Peroxisome Proliferator-Activated Receptor α-Fatty Acid-Binding Protein 1 Axis Modulates Nonalcoholic Steatohepatitis. Hepatology, 77, 239-255. https://doi.org/10.1002/hep.32538 |
[61] |
Xie, C., Yagai, T., Luo, Y., et al. (2017) Activation of Intestinal Hypoxia-Inducible Factor 2α during Obesity Contributes to Hepatic Steatosis. Nature Medicine, 23, 1298-1308. https://doi.org/10.1038/nm.4412 |
[62] |
李曼曼, 邱建利. 基于“肠-肝轴”理论探讨胆道闭锁术后从脾论治机制[J]. 现代中西医结合杂志, 2023, 32(21): 3018-3021, 3031. |
[63] |
周怡驰, 胡世平, 晏军, 等. 基于肠-肝轴与肝病实脾理论探讨脂肪肝的发病与治疗思路[J]. 新中医, 2021, 53(14): 186-189. |
[64] |
陈美岑. 基于“肝-肠轴”研究柔肝化纤颗粒调控肠道菌群失衡及治疗乙肝肝硬化代偿期的临床研究[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2020. |
[65] |
钤培国. 肝肠循环的中西医研究进展[J]. 医学综述, 2016, 22(14): 2799-2802. |
[66] |
Chen, M.L., Yi, L., Zhang, Y., et al. (2016) Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio, 7, e02210-15. https://doi.org/10.1128/mBio.02210-15 |
[67] |
贺凯. 黄连生物碱调节高脂C57BL/6J小鼠胆汁酸信号通路和肠道微生物改善血脂异常研究[D]: [博士学位论文]. 重庆: 西南大学, 2017. |
[68] |
Zeng, S.L., Li, S.Z., Xiao, P.T., et al. (2020) Citrus Polymethoxyflavones Attenuate Metabolic Syndrome by Regulating Gut Microbiome and Amino Acid Metabolism. Science Advances, 6, eaax6208. https://doi.org/10.1126/sciadv.aax6208 |
[69] |
Jia, X.K., Xu, W., Zhang, L., et al. (2021) Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 11, Article 634780. https://doi.org/10.3389/fcimb.2021.634780 |
[70] |
Janeiro, M.H., Ramírez, M.J., Milagro, F.I., et al. (2018) Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10, Article 1398. https://doi.org/10.3390/nu10101398 |
[71] |
Gillard, J., Clerbaux, L.A., Nachit, M., et al. (2022) Bile Acids Contribute to the Development of Non-Alcoholic Steatohepatitis in Mice. JHEP Reports, 4, Article ID: 100387. https://doi.org/10.1016/j.jhepr.2021.100387 |
[72] |
Liu, M., Shi, W., Huang, Y.F., et al. (2023) Intestinal Flora: A New Target for Traditional Chinese Medicine to Improve Lipid Metabolism Disorders. Frontiers in Pharmacology, 14, Article 1134430. https://doi.org/10.3389/fphar.2023.1134430 |