R3中 p-curl-div 系统解的存在性
Existence of Nontrivial Solutions for p-curl-div System in R 3
DOI:10.12677/AAM.2024.134177,PDF,下载: 159浏览: 255科研立项经费支持
作者:杨 洋,滕凯民:太原理工大学数学学院,山西 晋中
关键词:p-curl-div系统变分发弱解p-curl-div SystemVariational ApproachWeak Solution
摘要:本文采用变分法研究如下的 p-curl-div 方程 ∇ × (|∇ × u| p−2∇ × u) − ∇(|divu| p−2divu) = f (x, u), x ∈ R 3非平凡解的存在性,其中,1 < p < 3, f (x, u) : R 3× R 3→ R 3满足一些合理性假设。
Abstract:In this paper, we study the following p-curl-div system ∇ × (|∇ × u| p−2∇ × u) − ∇(|divu| p−2divu) = f (x, u), x ∈ R 3and establish the existence of solution, where 1 < p < 3, f (x, u) : R 3× R 3→ R 3satisfies some reasonable hypothesis.
文章引用:杨洋, 滕凯民. R 3中 p-curl-div 系统解的存在性[J]. 应用数学进展, 2024, 13(4): 1882-1904. https://doi.org/10.12677/AAM.2024.134177

参考文献

[1] Chapman, S.J. (2000) A Hierarchy of Models for Type-II Superconductors. SIAM Review, 42, 555-598.
https://doi.org/10.1137/S0036144599371913
[2] Yin, H.M., Li, B.Q. and Zou, J. (2002) A Degenerate Evolution System Modeling Bean’s Critical-State Type-II Superconductors. Discrete and Continuous Dynamical Systems, 8, 781- 794.
https://doi.org/10.3934/dcds.2002.8.781
[3] Yin, H.M. (2006) Regularity of Weak Solution to a p-Curl-System. Differential and Integral Equations, 4, 361-368.
[4] Laforest, M. (2018) The p-CurlCurl: Spaces, Traces, Coercivity and a Helmholtz Decomposi- tion in Lp. arXiv:1808.05976v1
[5] Wu, H. and Bian, B. (2019) Global Boundedness of the Curl for a p-Curl System in Convex Domains. arXiv:1909.00159v1
[6] Xiang, M.Q., Wang, F.L. and Zhang, B.L. (2017) Existence and Multiplicity of Solutions for p(x)-Curl Systems Arising in Electromagnetism. Journal of Mathematical Analysis and Applications, 448, 1600-1617.
https://doi.org/10.1016/j.jmaa.2016.11.086
[7] Benci, V. and Fortunato, D. (2004) Towards a Unified Field Theory for Classical Electrody- namics. Archive for Rational Mechanics and Analysis, 173, 379-414.
https://doi.org/10.1007/s00205-004-0324-7
[8] Saito, T. (2022) Existence of a Positive Solution for Some Quasilinear Elliptic Equations in RN . Journal of Differential Equations, 338, 591-635.
https://doi.org/10.1016/j.jde.2022.08.029
[9] Liu, S., Xu, X. and Zhang, J. (2020) Global Well-Posedness of Strong Solutions with Large Oscillations and Vacuum to the Compressible Navier-Stokes-Poisson Equations Subject to Large and Non-Flat Doing Profile. Journal of Differential Equations, 269, 8468-8508.
https://doi.org/10.1016/j.jde.2020.06.006
[10] Rabinowtiz, P.H. (1986) Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society, Providence.
[11] Glowinski, R. and Marroco, A. (1975) Sur l’approximation, par ´el´ements finis d’ordre un, et la r´esolution, par p´enalisation-dualit´e d’une classe de probl`emes de Dirichlet non lin´eaires. ESAIM: Mathematical Modelling and Numerical Analysis, 9, 41-76.
https://doi.org/10.1051/m2an/197509R200411
[12] Hirata, J., Ikoma, N. and Tanaka, K. (2010) Nonlinear Scalar Field Equations in RN : Mountain Pass and Symmetric Mountain Pass Approaches. Topological Methods in Nonlinear Analysis, 35, 253-276.

为你推荐



Baidu
map