[1] |
Chapman, S.J. (2000) A Hierarchy of Models for Type-II Superconductors. SIAM Review, 42, 555-598. https://doi.org/10.1137/S0036144599371913 |
[2] |
Yin, H.M., Li, B.Q. and Zou, J. (2002) A Degenerate Evolution System Modeling Bean’s Critical-State Type-II Superconductors. Discrete and Continuous Dynamical Systems, 8, 781- 794. https://doi.org/10.3934/dcds.2002.8.781 |
[3] |
Yin, H.M. (2006) Regularity of Weak Solution to a p-Curl-System. Differential and Integral Equations, 4, 361-368. |
[4] |
Laforest, M. (2018) The p-CurlCurl: Spaces, Traces, Coercivity and a Helmholtz Decomposi- tion in Lp. arXiv:1808.05976v1 |
[5] |
Wu, H. and Bian, B. (2019) Global Boundedness of the Curl for a p-Curl System in Convex Domains. arXiv:1909.00159v1 |
[6] |
Xiang, M.Q., Wang, F.L. and Zhang, B.L. (2017) Existence and Multiplicity of Solutions for p(x)-Curl Systems Arising in Electromagnetism. Journal of Mathematical Analysis and Applications, 448, 1600-1617. https://doi.org/10.1016/j.jmaa.2016.11.086 |
[7] |
Benci, V. and Fortunato, D. (2004) Towards a Unified Field Theory for Classical Electrody- namics. Archive for Rational Mechanics and Analysis, 173, 379-414. https://doi.org/10.1007/s00205-004-0324-7 |
[8] |
Saito, T. (2022) Existence of a Positive Solution for Some Quasilinear Elliptic Equations in RN . Journal of Differential Equations, 338, 591-635. https://doi.org/10.1016/j.jde.2022.08.029 |
[9] |
Liu, S., Xu, X. and Zhang, J. (2020) Global Well-Posedness of Strong Solutions with Large Oscillations and Vacuum to the Compressible Navier-Stokes-Poisson Equations Subject to Large and Non-Flat Doing Profile. Journal of Differential Equations, 269, 8468-8508. https://doi.org/10.1016/j.jde.2020.06.006 |
[10] |
Rabinowtiz, P.H. (1986) Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society, Providence. |
[11] |
Glowinski, R. and Marroco, A. (1975) Sur l’approximation, par ´el´ements finis d’ordre un, et la r´esolution, par p´enalisation-dualit´e d’une classe de probl`emes de Dirichlet non lin´eaires. ESAIM: Mathematical Modelling and Numerical Analysis, 9, 41-76. https://doi.org/10.1051/m2an/197509R200411 |
[12] |
Hirata, J., Ikoma, N. and Tanaka, K. (2010) Nonlinear Scalar Field Equations in RN : Mountain Pass and Symmetric Mountain Pass Approaches. Topological Methods in Nonlinear Analysis, 35, 253-276. |