[1] |
Glab, T.K. and Boratynski, J. (2017) Potential of Casein as a Carrier for Biologically Active Agents.Topics in Current Chemistry, 375, Article No. 71. https://doi.org/10.1007/s41061-017-0158-z |
[2] |
Rafiee Tari, N., Arranz, E. and Corredig, M. (2019) Effect of Protein Composition of a Model Dairy Matrix Containing Various Levels of Beta-Casein on the Structure and Anti-Inflammatory Activity ofin VitroDigestates.Food & Function, 10, 1870-1879. https://doi.org/10.1039/C8FO01860J |
[3] |
Yvette, C.L., Nicolaas, E.P.D., Martin, J. and Peter, B.S. (2005) Casein and Soy Protein Meals Differently Affect Whole-Body and Splanchnic Protein Metabolism in Healthy Humans.The Journal of Nutrition, 135, 1080-1087. https://doi.org/10.1093/jn/135.5.1080 |
[4] |
Pereira, P.C. (2014) Milk Nutritional Composition and Its Role in Human Health.Nutrition, 30, 619-627. https://doi.org/10.1016/j.nut.2013.10.011 |
[5] |
Politis, I. and Chronopoulou, R. (2008) Milk Peptides and Immune Response in the Neonate.Advances in Experimental Medicine and Biology, 606, 253-269. https://doi.org/10.1007/978-0-387-74087-4_10 |
[6] |
Fiat, A.M., Migliore-Samour, D., Jollès, P., Drouet, L., Sollier, C.B.D. and Caen, J. (1993) Biologically Active Peptides from Milk Proteins with Emphasis on Two Examples Concerning Antithrombotic and Immunomodulating Activities.Journal of DairyScience, 76, 301-310. https://doi.org/10.3168/jds.S0022-0302(93)77351-8 |
[7] |
Hejel, P., Kocsis, R., Helyes, K.,et al. (2021) Bioactive Peptides in Milk Literature Review.Magyar AllatorvosokLapja, 143, 47-55. |
[8] |
Jauhiainen, T. and Korpela, R. (2007) Milk Peptides and Blood Pressure.The Journal of Nutrition, 137, 825S-829S. https://doi.org/10.1093/jn/137.3.825S |
[9] |
Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009) Casein-Derived Bioactive Peptides: Biological Effects, Industrial Uses, Safety Aspects and Regulatory Status.International Dairy Journal, 19, 643-654. https://doi.org/10.1016/j.idairyj.2009.06.001 |
[10] |
Wada, Y. and Lönnerdal, B. (2014) Bioactive Peptides Derived from Human Milk Proteins-Mechanisms of Action.The Journal of Nutritional Biochemistry, 25, 503-514. https://doi.org/10.1016/j.jnutbio.2013.10.012 |
[11] |
Daniloski, D., McCarthy, N.A., Vasiljevic, T.,et al. (2021) Bovineβ-Casomorphins: Friends or Foes? A Comprehensive Assessment of Evidence fromin Vitroandex VivoStudies.Trends in Food Science and Technology, 116, 681-700. https://doi.org/10.1016/j.tifs.2021.08.003 |
[12] |
Cruz-Huerta, E., Garcia-Nebot, M.J., Miralles, B., Recio, I. and Amigo, L. (2015) Case in Ophosphopeptides Released After Tryptic Hydrolysis versus Simulated Gastrointestinal Digestion of a Casein-Derived By-Product.Food Chemistry, 168, 648-655. https://doi.org/10.1016/j.foodchem.2014.07.090 |
[13] |
刘微, 王振元, 张婉舒, 等. 人乳β-酪蛋白单体二级结构及胶束微观结构的研究[J]. 中国乳品工业, 2014(42): 4-7. |
[14] |
Kibangou, I.B., Bouhallab, S., Henry, G.,et al.(2005) Milk Proteins and Iron Absorption: Contrasting Effects of Different Caseinophosphopeptides.Pediatric Research, 58, 731-734. https://doi.org/10.1203/01.PDR.0000180555.27710.46 |
[15] |
Du, X., Li, L.X., Behboodi-Sadabad, F., Welle, A., Li, J.S., Heissler, S.,et al. (2017) Bio-Inspired Strategy for Controlled Dopamine Polymerization in Basic Solutions.Polymer Chemistry, 8, 2145-2151. https://doi.org/10.1039/C7PY00051K |
[16] |
Huppertz, T., Gazi, I., Luyten, H.,et al. (2017) Hydration of Casein Micelles and Caseinates: Implications for Casein Micelle Structure.International Dairy Journal, 74, 1-11. https://doi.org/10.1016/j.idairyj.2017.03.006 |
[17] |
Horne, D.S. (2008) Casein Micelle Structure and Stability. In: Thompson, A., Boland, M. and Singh, H., Eds.,MilkProteins, Academic Press, Cambridge, 133-162. https://doi.org/10.1016/B978-0-12-374039-7.00005-2 |
[18] |
Qin, L., Dong, H., Mu, Z., Zhang, Y. and Dong, G. (2015) Preparation and Bioactive Properties of Chitosan and Casein Phosphopeptides Composite Coatings for Orthopedic Implants.Carbohydrate Polymers, 133, 236-244. https://doi.org/10.1016/j.carbpol.2015.06.099 |
[19] |
许健宇. 粘韧蛋白质水凝胶的制备及性能研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2019. |
[20] |
薛高飞, 王伟国, 白天, 叶美丹. 蛋白质基水凝胶的制备及应用研究进展[J]. 功能材料与器件学报, 2021, 27(5): 396-407. |
[21] |
Reiter, M., Reitmaier, M., Haslbeck, A., Kulozik, U.,et al. (2023) Acid Gelation Functionality of Casein Micelles in Concentrated State: Influence of Calcium Supplementation or Chelation Combined with Enzymatic Stabilization.Food Hydrocolloids, 143, Article ID: 108927. https://doi.org/10.1016/j.foodhyd.2023.108927 |
[22] |
Tan, J. and Joyner, H.S. (2019) Characterizing and Modeling Wear-Recovery Behaviors of Acid-Induced Casein Hydrogels.Wear, 424, 33-39. https://doi.org/10.1016/j.wear.2019.02.003 |
[23] |
Raak, N. and Corredig, M. (2022) Kinetic Aspects of Casein Micelle Cross-Linking by Transglutaminase at Different Volume Fractions.Food Hydrocolloids, 128, Article ID: 107603. https://doi.org/10.1016/j.foodhyd.2022.107603 |
[24] |
De Kruif, C.G.,et al.(2015) Water Holding Capacity and Swelling of Casein Hydrogels.Food Hydrocolloids, 44, 372-379. https://doi.org/10.1016/j.foodhyd.2014.10.007 |
[25] |
Wei, Y.,et al. (2016) Structure Formation in PH-Sensitive Hydrogels Composed of Sodium Caseinate andN,O-Carboxymethyl Chitosan.International Journal of Biological Macromolecules, 89, 353-359. https://doi.org/10.1016/j.ijbiomac.2016.04.081 |
[26] |
Xu, J., Fan, Z.W., Duanb, L.J. and Gao, G.H. (2018) A Tough, Stretchable, and Extensively Sticky Hydrogel Driven by Milk Protein.Polymer Chemistry, 9, 2617-2624. https://doi.org/10.1039/C8PY00319J |
[27] |
王广宇. 酪蛋白/壳聚糖复合水凝胶的制备及性能研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2022. |
[28] |
杨羽西. 酪蛋白基双网络纳米复合水凝胶的制备及其性能研究[D]: [硕士学位论文]. 西安: 陕西科技大学, 2022. |
[29] |
刘成杰. 酪蛋白纳米球的制备及其细胞摄取研究[D]: [博士学位论文]. 南京: 南京大学, 2010. |
[30] |
Ranadheera, C.S.,et al. (2016) Utilizing Unique Properties of Caseins and the Casein Micelle for Delivery of Sensitive Food Ingredients and Bioactives.Trends in Food Science & Technology, 57, 178-187. https://doi.org/10.1016/j.tifs.2016.10.005 |
[31] |
Simao, A.R.,et al. (2020) PH-Responsive Hybrid Hydrogels: Chondroitin Sulfate/Casein Trapped Silica Nanospheres for Controlled Drug Release.International Journal of Biological Macromolecules, 148, 302-315. https://doi.org/10.1016/j.ijbiomac.2020.01.093 |
[32] |
Wang, X.,et al. (2021) Synthesis of Casein-γ-Polyglutamic Acid Hydrogels by Microbial Transglutaminase-Mediated Gelation for Controlled Release of Drugs.Journal of Biomaterials Applications, 36, 237-245. https://doi.org/10.1177/08853282211011724 |
[33] |
Hadizadeh, F.,et al. (2019) Casein-Based Hydrogel Carrying Insulin: Preparation,in VitroEvaluation andin VivoAssessment.Journal of Pharmaceutical Investigation, 49, 635-641. https://doi.org/10.1007/s40005-018-00422-y |
[34] |
Li, N.N., Fu, C.P. and Zhang, L.M. (2014) Using Casein and Oxidized Hyaluronic Acid to Form Biocompatible Composite Hydrogels for Controlled Drug Release.Materials Science & Engineering:C, 36, 287-293. https://doi.org/10.1016/j.msec.2013.12.025 |
[35] |
Wang, J.,et al. (2022) Casein Micelles Embedded Composite Organohydrogel as Potential Wound Dressing.International Journal of Biological Macromolecules, 211, 678-688. https://doi.org/10.1016/j.ijbiomac.2022.05.081 |
[36] |
Zhu, Q.,et al. (2023) White-Light Crosslinkable Milk Protein Bioadhesive with Ultrafast Gelation for First-Aid Wound Treatment.Biomaterials Research, 27, Article ID: s40824-023-00346-1. https://doi.org/10.1186/s40824-023-00346-1 |
[37] |
Garcia, L.V.,et al. (2023) Antiseptic-Loaded Casein Hydrogels for Wound Dressings.Pharmaceutics, 15, Article 334. https://doi.org/10.3390/pharmaceutics15020334 |
[38] |
Lee, M.S.,et al. (2023) Rationally Designed Bioactive Milk-Derived Protein Scaffolds Enhanced New Bone Formation.Bioactive Materials, 20, 368-380. https://doi.org/10.1016/j.bioactmat.2022.05.028 |
[39] |
Dragusin, D.M.,et al. (2011) Casein—Nanosized Nucleator forin VitroMineralization.Optoelectronics and Advanced Materials:Rapid Communications, 5, 1320-1324. |
[40] |
Dumitrescu, G.D.,et al. (2022) Development of New Hybrid Casein-Loaded PHEMA-PEGDA Hydrogels with Enhanced Mineralisation Potential.Materials, 15, Article 840. https://doi.org/10.3390/ma15030840 |
[41] |
Gong, Y.,et al. (2019) Development of CaCO3Microsphere-Based Composite Hydrogel for Dual Delivery of Growth Factor and Ca to Enhance Bone Regeneration.Biomaterials Science, 7, 3614-3626. https://doi.org/10.1039/C9BM00463G |
[42] |
Sali, S.S.,et al. (2021) Biodegradable Methacrylated Casein for Cardiac Tissue Engineering Applications.Journal of Materials Chemistry B, 9, 1557-1567. https://doi.org/10.1039/D0TB02496A |