[1] |
蔡军, 孙英贤, 李明玉, 等. 中国高血压临床实践指南[J]. 中华心血管病杂志, 2022, 50(11): 1050. |
[2] |
国家心血管病中心. 中国心血管健康与疾病报告2022[M]. 北京: 中国协和医科大学出版社, 2023. |
[3] |
黄昌日, 郑明善, 金文俊. 降压药物相关基因组学研究进展[J]. 中国药物经济学, 2020, 15(6): 125-128. |
[4] |
Lupton, S.J., Chiu, C.L. and Lind, J.M. (2011) A Hypertension Gene: Are We There Yet?Twin Research and Human Genetics, 14, 295-304. https://doi.org/10.1375/twin.14.4.295 |
[5] |
个体化用药遗传咨询指南[J]. 中国临床药学杂志, 2022, 31(5): 321-333. https://doi.org/10.19577/J.1007-4406.2022.05.001 |
[6] |
Garimella, P.S., Du Toit, C., Le, N.N. and Padmanabhan, S. (2023) A Genomic Deep Field View of Hypertension.Kidney International, 103, 42-52. https://doi.org/10.1016/j.kint.2022.09.029 |
[7] |
Eadon, M.T., Maddatu, J., Moe, S.M., Sinha, A.D., Ferreira, R.M., Miller, B.W., Sher, S.J., Su, J., Pratt, V.M., Chapman, A.B., Skaar, T.C. and Moorthi, R.N. (2022) Pharmacogenomics of Hypertension in CKD: The CKD-PGX Study.Kidney360, 3, 307-316. https://doi.org/10.34067/KID.0005362021 |
[8] |
Chen, K., Xiao, P., Li, G., Wang, C. and Yang, C. (2021) Distributive Characteristics of the CYP2C9 and AGTR1 Genetic Polymorphisms in Han Chinese Hypertensive Patients: A Retrospective Study.BMC Cardiovascular Disorders, 21, Article No. 73. https://doi.org/10.1186/s12872-021-01895-w |
[9] |
Rasool, G.S., Al-Awadi, S.J., Hussien, A.A. and Al-Attar, M.M. (2024) Genetic Variation of CYP2C9 Gene and Its Correlation with Cardiovascular Disease Risk Factors.Molecular Biology Reports, 51, Article No. 105. https://doi.org/10.1007/s11033-023-09151-4 |
[10] |
Yu, B.N., Luo, C.H., Wang, D., Wang, A., Li, Z., Zhang, W., Mo, W. and Zhou, H.H. (2004) CYP2C9 Allele Variants in Chinese Hypertension Patients and Healthy Controls.Clinica Chimica Acta, 348, 57-61. https://doi.org/10.1016/j.cccn.2004.04.028 |
[11] |
Petersen, M., Andersen, J.T., Jimenez-Solem, E., Broedbaek, K., Hjelvang, B.R., Henriksen, T., Frandse, E., Forman, J.L., Torp-Pedersen, C., Kober, L. and Poulsen, H.E. (2012) Effect of the Arg389Glyβ1-Adrenoceptor Pol Ymorphism on Plasma Renin Activity and Heart Rate, and the Genotype-Dependent Response to Metoprolol Treatment.Clinical and Experimental Pharmacology & Physiology, 39, 779-785. https://doi.org/10.1111/j.1440-1681.2012.05736.x |
[12] |
Liu, J., Liu, Z.-Q., Yu, B.-N., Xu, F.-H., Mo, W., Zhou, G., Liu, Y.-Z., Li, Q. and Zhou, H.-H. (2006)β1-Adrenergic Receptor Polymorphisms Influence the Response to Metoprolol Monotherapy in Patients with Essential Hypertension.Clinical Pharmacology and Therapeutics, 80, 23-32. https://doi.org/10.1016/j.clpt.2006.03.004 |
[13] |
Gonzalez, F.J. (2005) Role of Cytochromes P450 in Chemical Toxicity and Oxidative Stress: Studies with CYP2E1.Mutation Research, 569, 101-110. https://doi.org/10.1016/j.mrfmmm.2004.04.021 |
[14] |
Rettie, A.E., Haining, R.L., Bajpa, M.,et al. (1999) A Common Genetic Basis for Idiosyncratic Toxicity of Warfarin and Phenytoin.Epilepsy Research, 35, 253-255. https://doi.org/10.1016/S0920-1211(99)00017-0 |
[15] |
Ieiri, I., Tainaka, H., Morita, T.,et al. (2000) Catalytic Activity of Three Variants (Ile, Leu, and Thr) at Amino Acid Residue 359 in Human CYP2C9 Gene and Simultaneous Detection Using Single-Strand Conformation Polymorphism Analysis.Therapeutic Drug Monitoring, 22, 237-244. https://doi.org/10.1097/00007691-200006000-00001 |
[16] |
Mirzaev, K., Abdullaev, S., Akmalova, K., Sozaeva, J., Grishina, E., Shuev, G., Bolieva, L., Sozaeva, M., Zhuchkova, S., Gimaldinova, N., Sidukova, E., Serebrova, S., Asoskova, A., Shein, A., Poptsova, M., Suleymanov, S., Burashnikova, I., Shikaleva, A., Kachanova, A., Fedorinov, D. and Sychev, D. (2020) Interethnic Differences in the Prevalence of Main Cardiovascular Pharmacogenetic Biomarkers.Pharmacogenomics, 21, 677-694. https://doi.org/10.2217/pgs-2020-0005 |
[17] |
王申, 张舜华, 薛薇, 王鹏飞, 任格, 陈传军. 沙坦类药物代谢酶CYP2C9的基因遗传多态性在高血压患者中的分布特征[J]. 中国循证心血管医学杂志, 2021, 13(6): 712-715. |
[18] |
Ahmed, S., Altaf, N., Ejaz, M., Altaf, A., Amin, A., Janjua, K., Khan, A.U., Imran, I. and Khan, S. (2020) Variations in the Frequencies of Polymorphisms in the CYP2C9 Gene in Six Major Ethnicities of Pakistan.Scientific Reports, 10, Article No. 19370. https://doi.org/10.1038/s41598-020-76366-x |
[19] |
Zhang, Y., Wang, W.E., Zhang, X.,et al. (2019) Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiacβ-Adrenergic Response without Adverse Effects on the Heart.Circulation Research, 124, 1760-1777. https://doi.org/10.1161/CIRCRESAHA.118.313417 |
[20] |
Mulerova, T., Uchasova, E., Ogarkov, M. and Barbarash, O. (2020) Genetic Forms and Pathophysiology of Essential Arterial Hypertension in Minor Indigenous Peoples of Russia.BMC Cardiovascular Disorders, 20, Article No. 169. https://doi.org/10.1186/s12872-020-01464-7 |
[21] |
Sun, X., Zhou, M., Wen, G., Huang, Y., Wu, J., Peng, L., Jiang, W., Yuan, H., Lu, Y. and Cai, J. (2021) Paroxetine Attenuates Cardiac Hypertrophy via Blocking GRK2 and ADRB1 Interaction in Hypertension.Journal of theAmerican Heart Association, 10, E016364. https://doi.org/10.1161/JAHA.120.016364 |
[22] |
Thomas, C.D. and Johnson, J.A. (2020) Pharmacogenetic Factors Affectingβ-Blocker Metabolism and Response.Expert Opinion on Drug Metabolism & Toxicology, 16, 953-964. https://doi.org/10.1080/17425255.2020.1803279 |
[23] |
Wang, Z., Hou, J., Zheng, H., Wang, D., Tian, W., Zhang, D. and Yan, J. (2023) Genetic and Phenotypic Frequency Distribution of ACE, ADRB1, AGTR1, CYP2C9*3, CYP2D6*10, CYP3A5*3, NPPA and Factors Associated with Hypertension in Chinese Han Hypertensive Patients.Medicine(Baltimore), 102, E33206. https://doi.org/10.1097/MD.0000000000033206 |
[24] |
孙思雨, 尚茂林. 蚌埠地区高血压病人药物基因多态性的分布[J]. 蚌埠医学院学报, 2022, 47(7): 912-916. |
[25] |
徐筑君, 蔡道翠. 重庆永川区高血压患者降压药相关基因分布研究[J]. 心血管病防治知识, 2022, 12(7): 30-34. |
[26] |
林玲, 葛高顺. 厦门地区原发性高血压患者抗高血压药物相关基因多态性分析与基因导向用药的疗效评估[J]. 内蒙古医学杂志, 2023, 55(10): 1161-1169. |
[27] |
黄留玉. PCR最新技术原理、方法及应用[M]. 第2版. 北京: 化学工业出版社, 2010: 38-298. |
[28] |
Crossley, B.M., Bai, J., Glaser, A., Maes, R., Porter, E., Killian, M.L., Clement, T. and Toohey-Kurth, K. (2020) Guidelines for Sanger Sequencing and Molecular Assay Monitoring.Journal of Veterinary Diagnostic Investigation, 32, 767-775. https://doi.org/10.1177/1040638720905833 |
[29] |
Giraldo-Ocampo, S., Diaz-Ordoñez, L., Silva-Cuero, Y.K., Gutierrez-Medina, J.D., Candelo, E., Diaz, J.A. and Pachajoa, H. (2023) Frequency of Polymorphisms in the CYP2C9, VKORC1, and CYP4F2 Genes Related to the Metabolism of Warfarin in Healthy Donors from Cali, Colombia.Medicine(Baltimore), 102, E34204. https://doi.org/10.1097/MD.0000000000034204 |
[30] |
Ma, S., Luo, Z., Zhou, X., Zhou, H., Chen, L. and Zhang, W. (2022) Effect of NPC1L1 Polymorphism on Warfarin Stable Dose in Chinese Patients under Heart Valve Replacement Surgery.Clinical and Experimental Pharmacology and Physiology, 49, 212-218. https://doi.org/10.1111/1440-1681.13599 |
[31] |
Marras, S.A. (2008) Interactive Fluorophore and Quencher Pairs for Labeling Fluorescent Nucleic Acid Hybridization Probes.Molecular Biotechnology, 38, 247-255. https://doi.org/10.1007/s12033-007-9012-9 |
[32] |
Xiao, Z.L., Yang, M., Chen, X.B., Xie, X.M. and Chen, M.F. (2022) Personalized Antihypertensive Treatment Guided by Pharmacogenomics in China.Cardiovascular Diagnosis and Therapy, 12, 635-645. https://doi.org/10.21037/cdt-22-154 |
[33] |
Muslimova, E., Rebrova, T., Kondratieva, D., Korepanov, V., Sonduev, E., Kozlov, B. and Afanasiev, S. (2022) Expression of theβ1-Adrenergic Receptor (ADRB1) Gene in the Myocardium andβ-Adrenergic Reactivity of the Body in Patients with a History of Myocardium Infraction.Gene, 844, Article ID: 146820. https://doi.org/10.1016/j.gene.2022.146820 |
[34] |
王廷华, 刘佳, 夏庆杰. PCR理论与技术[M]. 第3版. 北京: 科学出版社, 2013: 42-152. |
[35] |
Marjani, A. and Gharanjik, A.M. (2018) Genetic Polymorphism of CYP2C9 among Sistani Ethnic Group in Gorgan.Indian Journal of Clinical Biochemistry, 33, 208-213. https://doi.org/10.1007/s12291-017-0660-7 |
[36] |
Sr, K., G, B., Jain, S., Moorthy, N., Manjunath, S.C. and Christopher, R. (2019) Prosthetic Valve Thrombosis—Association of Genetic Polymorphisms of VKORC1, CYP2C9 and CYP4F2 Genes.Medicine(Baltimore), 98, E14365. https://doi.org/10.1097/MD.0000000000014365 |
[37] |
Muslimova, E., Rebrova, T., Kondratieva, D., Korepanov, V., Sonduev, E., Kozlov, B. and Afanasiev, S. (2022) Expression of theβ1-Adrenergic Receptor (ADRB1) Gene in the Myocardium andβ-Adrenergic Reactivity of the Body in Patients with a History of Myocardium Infraction.Gene, 844, Article ID: 146820. https://doi.org/10.1016/j.gene.2022.146820 |
[38] |
Elfaki, I., Mir, R., Abu-Duhier, F.M., Jha, C.K., Ahmad, Al-Alawy, A.I., Babakr, A.T. and Habib, S.A.E. (2020) Analysis of the Potential Association of Drug-Metabolizing Enzymes CYP2C9*3 and CYP2C19*3 Gene Variations with Type 2 Diabetes: A Case-Control Study.Current Drug Metabolism, 21, 1152-1160. https://doi.org/10.2174/1389200221999201027200931 |
[39] |
Mehta, M.P., Gajjar, N.D., Patel, R.J., Joshi, L.P. and Shah, G.B. (2023) Prevalence of CYP2C9 and CYP2C19 Variants and the Impact on Clopidogrel Efficacy in Patients Having CYPC19*2 Variant.Indian Journal of Pharmacology, 55, 27-33. |
[40] |
Moric-Janiszewska, E., Smolik, S., Szydłowski, L. and Kapral, M. (2023) Associations between Selected ADRB1 and CYP2D6 Gene Polymorphisms in Children with Ventricular and Supraventricular Arrhythmias.Medicina(Kaunas), 59, Article No. 2057. https://doi.org/10.3390/medicina59122057 |
[41] |
Langaee, T., El Rouby, N., Stauffer, L., Galloway, C. and Cavallari, L.H. (2019) Development and Cross-Validation of High-Resolution Melting Analysis-Based Cardiovascular Pharmacogenetics Genotyping Panel.Genetic Testing and Molecular Biomarkers, 23, 209-214. https://doi.org/10.1089/gtmb.2018.0298 |
[42] |
Chen, K., Li, Y., Yang, C., Xiao, P., Li, G. and Xu, Y. (2023) CYP2D6 and ADRB1 Genetic Polymorphisms and the Selection of Antihypertensive Beta-Receptor Blockers for Hypertensive Patients.American Journal of Cardiovascular Disease, 13, 264-271. |
[43] |
Castaño-Amores, C., Antúnez-Rodríguez, A., Pozo-Agundo, A., García-Rodríguez, S., Martínez-González, L.J. and Dávila-Fajardo, C.L. (2023) Genetic Polymorphisms in ADRB1, ADRB2 and CYP2D6 Genes and Response to Beta-Blockers in Patients with Acute Coronary Syndrome.Biomedicine & Pharmacotherapy, 169, Article ID: 115869. https://doi.org/10.1016/j.biopha.2023.115869 |