[1] |
Dragovich, M.A.and Mor, A. (2018) The SLAM Family Receptors: Potential Therapeutic Targets for Inflammatory and Autoimmune Diseases.Autoimmunity Reviews, 17, 674-682. https://doi.org/10.1016/j.autrev.2018.01.018 |
[2] |
Calpe, S., Wang, N., Romero, X., Berger, S.B., Lanyi, A., Engel, P.,et al. (2008) The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses.Advances in Immunology, 97, 177-250. https://linkinghub.elsevier.com/retrieve/pii/S0065277608000047 https://doi.org/10.1016/S0065-2776(08)00004-7 |
[3] |
Cannons, J.L., Tangye, S.G. and Schwartzberg, P.L. (2011) SLAM Family Receptors and SAP Adaptors in Immunity.Annual Review of Immunology, 29, 665-705. https://doi.org/10.1146/annurev-immunol-030409-101302 |
[4] |
Thorley-Lawson, D.A., Schooley, R.T., Bhan, A.K. and Nadler, L.M. (1982) Epstein-Barr Virus Superinduces a New Human B Cell Differentiation Antigen (B-LAST 1) Expressed on Transformed Lymphoblasts.Cell, 30, 415-425. https://doi.org/10.1016/0092-8674(82)90239-2 |
[5] |
Staunton, D.E., Fisher, R.C., LeBeau, M.M., Lawrence, J.B., Barton, D.E., Francke, U.,et al. (1989) Blast-1 Possesses a Glycosyl-Phosphatidylinositol (GPI) Membrane Anchor, Is Related to LFA-3 and OX-45, and Maps to Chromosome 1q21-23.Journal of Experimental Medicine, 169, 1087-1099. https://doi.org/10.1084/jem.169.3.1087 |
[6] |
McArdel, S.L., Terhorst, C. and Sharpe, A.H. (2016) Roles of CD48 in Regulating Immunity and Tolerance.Clinical immunology(Orlando,Fla.), 164, 10-20. https://doi.org/10.1016/j.clim.2016.01.008 |
[7] |
Smith, G.M., Biggs, J., Norris, B., Anderson-Stewart, P. and Ward, R. (1997) Detection of a Soluble Form of the Leukocyte Surface Antigen CD48 in Plasma and Its Elevation in Patients with Lymphoid Leukemias and Arthritis.Journal of Clinical Immunology, 17, 502-509. https://doi.org/10.1023/A:1027327912204 |
[8] |
Metz, C.N., Brunner, G., Choi-Muira, N.H., Nguyen, H., Gabrilove, J., Caras, I.W.,et al. (1994) Release of GPI-Anchored Membrane Proteins by a Cell-Associated GPI-Specific Phospholipase D.The EMBO Journal, 13, 1741-1751. https://doi.org/10.1002/j.1460-2075.1994.tb06438.x |
[9] |
Elishmereni, M., Fyhrquist, N., Singh Gangwar, R., Lehtimäki, S., Alenius, H. and Levi-Schaffer, F. (2014) Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation.Journal of Investigative Dermatology, 134, 2928-2937. https://doi.org/10.1038/jid.2014.280 |
[10] |
Munitz, A., Bachelet, I., Finkelman, F.D., Rothenberg, M.E. and Levi-Schaffer, F. (2007) CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation.American Journal of Respiratory and Critical Care Medicine, 175, 911-918. https://doi.org/10.1164/rccm.200605-695OC |
[11] |
Gangwar, R.S., Minai-Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C.,et al. (2017) CD48 on Blood Leukocytes and in Serum of Asthma Patients Varies with Severity.Allergy, 72, 888-895. https://doi.org/10.1111/all.13082 |
[12] |
Tissot, C., Rebouissou, C., Klein, B. and Mechti, N. (1997) Both Human α/β and γ Interferons Upregulate the Expression of CD48 Cell Surface Molecules.Journal of Interferon & Cytokine Research, 17, 17-26. https://doi.org/10.1089/jir.1997.17.17 |
[13] |
Pahima, H., Zaffran, I., Ben-Chetrit, E., Jarjoui, A, Gaur, P., Manca, M.L.,et al. (2022) COVID-19 Patients Are Characterized by Dysregulated Levels of Membrane and Soluble CD48.Annals of Allergy,Asthma &Immunology, 208, Article 161.04. https://doi.org/10.4049/jimmunol.208.Supp.161.04 |
[14] |
Wu, Y., Kuang, D.M., Pan, W.D., Wan, Y.L., Lao, X.M., Wang, D.,et al. (2013) Monocyte/Macrophage-Elicited Natural Killer Cell Dysfunction in Hepatocellular Carcinoma Is Mediated by CD48/2B4 Interactions.Hepatology, 57, 1107-1116. https://doi.org/10.1002/hep.26192 |
[15] |
Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S.,et al. (2012) CD48 as a Novel Molecular Target for Antibody Therapy in Multiple Myeloma.British Journal of Haematology, 156, 213-224. https://doi.org/10.1111/j.1365-2141.2011.08941.x |
[16] |
Chiba, M., Shimono, J., Ishio, T., Takei, N., kasahara, K., Ogasawara, R.,et al. (2022) Genome-Wide CRISPR Screens Identify CD48 Defining Susceptibility to NK Cytotoxicity in Peripheral T-Cell Lymphomas.Blood, 140, 1951-1963. https://doi.org/10.1182/blood.2022015646 |
[17] |
Mardomi, A., Mohammadi, N., Khosroshahi, H.T. and Abediankenari, S. (2020) An Update on Potentials and Promises of T Cell Co-Signaling Molecules in Transplantation.Journal of Cellular Physiology, 235, 4183-4197. https://doi.org/10.1002/jcp.29369 |
[18] |
Dong, Z., Cruz-Munoz, M.E., Zhong, M.C., Chen, R., Latour, S. and Veillette, A. (2009) Essential Function for SAP Family Adaptors in the Surveillance of Hematopoietic Cells by Natural Killer Cells.Nature Immunology, 10, 973-980. https://doi.org/10.1038/ni.1763 |
[19] |
Claus, M., Urlaub, D., Fasbender, F. and Watzl, C. (2019) SLAM Family Receptors in Natural Killer Cells-Mediators of Adhesion, Activation and Inhibition viacisand Trans Interactions.Clinical Immunology, 204, 37-42. https://doi.org/10.1016/j.clim.2018.10.011 |
[20] |
Nichols, K.E., Harkin, D.P., Levitz, S., Krainer, M., Kolquist, K.A., Genovese, C.,et al. (1998) Inactivating Mutations in an SH2 Domain-Encoding Gene in X-Linked Lymphoproliferative Syndrome.Proceedings of the National Academy of Sciences of the United States of America, 95, 13765-13770. https://doi.org/10.1073/pnas.95.23.13765 |
[21] |
Pahima, H., Puzzovio, P.G. and Levi-Schaffer, F. (2019) 2B4 and CD48: A Powerful Couple of the Immune System.Clinical Immunology, 204, 64-68. https://doi.org/10.1016/j.clim.2018.10.014 |
[22] |
Taniguchi, R.T., Guzior, D. and Kumar, V. (2007) 2B4 Inhibits NK-Cell Fratricide.Blood, 110, 2020-2023. https://doi.org/10.1182/blood-2007-02-076927 |
[23] |
Mathew, S.O., Kumaresan, P.R., Lee, J.K., Huynh, V.T. and Mathew, P.A. (2005) Mutational Analysis of the Human 2B4 (CD244)/CD48 Interaction: Lys 68 and Glu 70 in the V Domain of 2B4 Are Critical for CD48 Binding and Functional Activation of NK Cells.The Journal of Immunology, 175, 1005-1013. https://doi.org/10.4049/jimmunol.175.2.1005 |
[24] |
Claus, M., Wingert, S. and Watzl, C. (2016) Modulation of Natural Killer Cell Functions by Interactions between 2B4 and CD48 incisand in Trans.Open Biology, 6, Article 160010. https://doi.org/10.1098/rsob.160010 |
[25] |
Tufa, D.M., Yingst, A.M., Trahan, G.D., Shank, T., Jones, D., Shim, S.,et al. (2020) Human Innate Lymphoid Cell Precursors Express CD48 That Modulates ILC Differentiation through 2B4 Signaling.Science Immunology, 5, eaay4218. https://doi.org/10.1126/sciimmunol.aay4218 |
[26] |
Assarsson, E., Kambayashi, T., Schatzle, J.D., Cramer, S.O., von Bonin, A., Jensen, P.E.,et al. (2004) NK Cells Stimulate Proliferation of T and NK Cells through 2B4/CD48 Interactions.The Journal of Immunology, 173, 174-180. https://doi.org/10.4049/jimmunol.173.1.174 |
[27] |
Lee, K.M., Bhawan, S., Majima, T., Wei, H., Nishimura, M.I., Yagita, H.,et al. (2003) Cutting Edge: The NK Cell Receptor 2B4 Augments Antigen-Specific T Cell Cytotoxicity through CD48 Ligation on Neighboring T Cells.The Journal of Immunology, 170, 4881-4885. https://doi.org/10.4049/jimmunol.170.10.4881 |
[28] |
Kis-Toth, K. and Tsokos, G.C. (2014) Engagement of SLAMF2/CD48 Prolongs the Time Frame of Effective T Cell Activation by Supporting Mature Dendritic Cell Survival.The Journal of Immunology, 192, 4436-4442. https://doi.org/10.4049/jimmunol.1302909 |
[29] |
Elishmereni, M., Bachelet, I., Nissim Ben-Efraim, A.H., Mankuta, D. and Levi-Schaffer, F. (2013) Interacting Mast Cells and Eosinophils Acquire an Enhanced Activation Statein vitro.Allergy, 68, 171-179. https://doi.org/10.1111/all.12059 |
[30] |
Matsui, T., Connolly, J.E., Michnevitz, M., Chaussabel, D., Yu, C.I., Glaser, C.,et al. (2009) CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions.The Journal of Immunology, 182, 6815-6823. https://doi.org/10.4049/jimmunol.0802008 |
[31] |
Evans, E.J., Castro, M.A.A., O’Brien, R., Kearney, A., Walsh, H., Sparks, L.M.,et al. (2006) Crystal Structure and Binding Properties of the CD2 and CD244 (2B4)-Binding Protein, CD48.Journal of Biological Chemistry, 281, 29309-19320. https://doi.org/10.1074/jbc.M601314200 |
[32] |
Dustin, M.L., Sanders, M.E., Shaw, S. and Springer, T.A. (1987) Purified Lymphocyte Function-Associated Antigen 3 Binds to CD2 and Mediates T Lymphocyte Adhesion.Journal of Experimental Medicine, 165, 677-692. https://doi.org/10.1084/jem.165.3.677 |
[33] |
Van Der Merwe, P.A., McPherson, D.C., Brown, M.H., Barclay, A.N., Cyster, J.G., Williams, A.F.,et al. (1993) The NH2-Terminal Domain of Rat CD2 Binds Rat CD48 with a Low Affinity and Binding Does not Require Glycosylation of CD2.European Journal of Immunology, 23, 1373-1377. https://doi.org/10.1002/eji.1830230628 |
[34] |
Li, B., Lu, Y., Zhong, M.C., Qian, J., Li, R., Davidson, D.,et al. (2022)cisInteractions between CD2 and Its Ligands on T Cells Are Required for T Cell Activation.Science Immunology, 7, eabn6373. https://doi.org/10.1126/sciimmunol.abn6373 |
[35] |
Qin, L., Chavin, K.D., Lin, J., Yagita, H. and Bromberg, J.S. (1994) Anti-CD2 Receptor and Anti-CD2 Ligand (CD48) Antibodies Synergize to Prolong Allograft Survival.Journal of Experimental Medicine, 179, 341-346. https://doi.org/10.1084/jem.179.1.341 |
[36] |
Whitelock, J.M. and Iozzo, R.V. (2005) Heparan Sulfate: A Complex Polymer Charged with Biological Activity.Chemical Reviews, 105, 2745-2764. https://doi.org/10.1021/cr010213m |
[37] |
Ianelli, C.J., DeLellis, R. and Thorley-Lawson, D.A. (1998) CD48 Binds to Heparan Sulfate on the Surface of Epithelial Cells.Journal of Biological Chemistry, 273, 23367-23375. https://doi.org/10.1074/jbc.273.36.23367 |
[38] |
Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M.L., van der Merwe, A., Lublin, D.M.,et al. (1997) Survival of FimH-Expressing Enterobacteria in Macrophages Relies on Glycolipid Traffic.Nature, 389, 636-639. https://doi.org/10.1038/39376 |
[39] |
Möller, J., Lühmann, T., Chabria, M., Hall, H. and Vogel, V. (2013) Macrophages Lift off Surface-Bound Bacteria Using a Filopodium-Lamellipodium Hook-and-Shovel Mechanism.Scientific Reports, 3, Article No. 2884. https://doi.org/10.1038/srep02884 |
[40] |
Muñoz, S., Hernández-Pando, R., Abraham, S.N. and Enciso, J.A. (2003) Mast Cell Activation by Mycobacterium Tuberculosis: Mediator Release and Role of CD48.The Journal of Immunology, 170, 5590-5596. https://doi.org/10.4049/jimmunol.170.11.5590 |
[41] |
Gangwar, R.S. and Levi-Schaffer, F. (2016) sCD48 Is Anti-Inflammatory in Staphylococcus Aureus Enterotoxin B-Induced Eosinophilic Inflammation.Allergy, 71, 829-839. https://doi.org/10.1111/all.12851 |
[42] |
Hamid, Q. and Tulic, M. (2009) Immunobiology of Asthma.Annual Review of Physiology, 71, 489-507. https://doi.org/10.1146/annurev.physiol.010908.163200 |
[43] |
Ip, W.K., Wong, C.K., Wang, C.B., Tian, Y.P. and Lam, C.W.K. (2005) Interleukin-3,-5, and Granulocyte Macrophage Colony-Stimulating Factor Induce Adhesion and Chemotaxis of Human Eosinophils via p38 Mitogen-Activated Protein Kinase and Nuclear FactorκB.Immunopharmacology and Immunotoxicology, 27, 371-393. https://doi.org/10.1080/08923970500240925 |
[44] |
Klaman, L.D. and Thorley-Lawson, D.A. (1995) Characterization of the CD48 Gene Demonstrates a Positive Element that Is Specific to Epstein-Barr Virus-Immortalized B-Cell Lines and Contains an Essential NF-Kappa B Site.Journal of Virology, 69, 871-881. https://doi.org/10.1128/jvi.69.2.871-881.1995 |
[45] |
Ha, S.G., Ge, X.N., Bahaie, N.S., Kang, B.N., Rao, A., Rao, S.P.,et al. (2013) ORMDL3 Promotes Eosinophil Trafficking and Activation via Regulation of Integrins and CD48.Nature Communications, 4, Article No. 2479. https://doi.org/10.1038/ncomms3479 |
[46] |
Munitz, A., Bachelet, I., Fraenkel, S., Katz, G., Mandelboim, O., Simon, H.U.,et al. (2005) 2B4 (CD244) Is Expressed and Functional on Human Eosinophils.The Journal of Immunology, 174, 110-118. https://doi.org/10.4049/jimmunol.174.1.110 |
[47] |
Chen, R., Relouzat, F., Roncagalli, R., Aoukaty, A., Tan, R., Latour, S.,et al. (2004) Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors.Molecular and Cellular Biology, 24, 5144-5156. https://doi.org/10.1128/MCB.24.12.5144-5156.2004 |
[48] |
Zhang, T., Fang, Q., Liu, P., Wang, P., Feng, C. and Wang, J. (2022) Heme Oxygenase 1 Overexpression Induces Immune Evasion of Acute Myeloid Leukemia against Natural Killer Cells by Inhibiting CD48.Journal of Translational Medicine, 20, Article No. 394. https://doi.org/10.1186/s12967-022-03589-z |
[49] |
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021.CA:A Cancer Journal for Clinicians, 7, 7-33. https://doi.org/10.3322/caac.21654 |
[50] |
Umemoto, T., Johansson, A., Ahmad, S.A.I., Hashimoto, M., Kubota, S., Kikuchi, K.,et al. (2022) ATP Citrate Lyase Controls Hematopoietic Stem Cell Fate and Supports Bone Marrow Regeneration.The EMBO Journal, 41, e109463. https://onlinelibrary.wiley.com/doi/10.15252/embj.2021109463 https://doi.org/10.15252/embj.2021109463 |
[51] |
Bald, T., Krummel, M.F., Smyth, M.J. and Barry, K.C. (2020) The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies.Nature Immunology, 21, 835-847. https://doi.org/10.1038/s41590-020-0728-z |
[52] |
O’Shea, J.J., Holland, S.M. and Staudt, L.M. (2013) JAKs and STATs in Immunity, Immunodeficiency, and Cancer.The New England Journal of Medicine, 368, 161-170. https://doi.org/10.1056/NEJMra1202117 |
[53] |
Stark, G.R. and Darnell, J.E. (2012) The JAK-STAT Pathway at Twenty.Immunity, 36, 503-514. https://doi.org/10.1016/j.immuni.2012.03.013 |
[54] |
Morichika, K., Karube, K., Kayo, H., Uchino, S., Nishi, Y., Nakachi, S.,et al. (2019) Phosphorylated STAT 3 Expression Predicts Better Prognosis in Smoldering Type of Adult T-Cell Leukemia/Lymphoma.Cancer Science, 110, 2982-2991. https://doi.org/10.1111/cas.14114 |
[55] |
Maeda, M., Tanabe-Shibuya, J., Miyazato, P., Masutani, H., Yasunaga, J.I, Usami, K.,et al. (2020) IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia.Frontiers in Microbiology, 11, Article 356. https://doi.org/10.3389/fmicb.2020.00356 |
[56] |
Keszei, M., Latchman, Y.E., Vanguri, V.K., Brown, D.R., Detre, C., Morra, M.,et al. (2011) Auto-Antibody Production and Glomerulonephritis in CongenicSlamf1-/-andSlamf2-/-[B6.129]but not inSlamf1-/-andSlamf2-/-[BALB/c.129]Mice.International Immunology, 23, 149-158. https://doi.org/10.1093/intimm/dxq465 |
[57] |
Koh, A.E., Njoroge, S.W., Feliu, M., Cook, A., Selig, M.K., Latchman, Y.E.,et al. (2011) The SLAM Family Member CD48 (Slamf2) Protects Lupus-Prone Mice from Autoimmune Nephritis.Journal of Autoimmunity, 37, 48-57. https://doi.org/10.1016/j.jaut.2011.03.004 |
[58] |
Balada, E., Castro-Marrero, J., Pujol, A.P., Torres-Salido, M.T., Vilardell-Tarrés, M. and Ordi-Ros, J. (2011) Enhanced Transcript Levels of CD48 in CD4 T Cells from Systemic Lupus Erythematosus Patients.Immunobiology, 216, 1034-1037. https://doi.org/10.1016/j.imbio.2011.03.004 |
[59] |
Karampetsou, M.P., Comte, D., Kis-Toth, K., Kyttaris, V.C. and Tsokos, G.C. (2017) Expression Patterns of Signaling Lymphocytic Activation Molecule Family Members in Peripheral Blood Mononuclear Cell Subsets in Patients with Systemic Lupus Erythematosus.PLOS ONE, 12, e0186073. https://doi.org/10.1371/journal.pone.0186073 |
[60] |
Moran, M. and Miceli, M.C. (1998) Engagement of GPI-Linked CD48 Contributes to TCR Signals and Cytoskeletal Reorganization.Immunity, 9, 787-796. https://doi.org/10.1016/S1074-7613(00)80644-5 |
[61] |
Krishnan, S., Nambiar, M.P., Warke, V.G., Fisher, C.U., Mitchell, J., Delaney, N.,et al. (2004) Alterations in Lipid Raft Composition and Dynamics Contribute to Abnormal T Cell Responses in Systemic Lupus Erythematosus.The Journal of Immunology, 172, 7821-7831. https://doi.org/10.4049/jimmunol.172.12.7821 |
[62] |
Abadía-Molina, A.C., Ji, H., Faubion, W.A., Julien, A., Latchman, Y., Yagita, H.,et al. (2006) CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis.Gastroenterology, 130, 424-434. https://doi.org/10.1053/j.gastro.2005.12.009 |
[63] |
Luan, H.H., Wang, A., Hilliard, B.K., Carvalho, F., Rosen, C.E., Ahasic, A.M.,et al. (2019) GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance.Cell, 178, 1231-1244. E11. https://doi.org/10.1016/j.cell.2019.07.033 |
[64] |
Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G.,et al. (2017) A Pathology Atlas of the Human Cancer Transcriptome.Science, 357, eaan2507. https://doi.org/10.1126/science.aan2507 |
[65] |
Wang, Z., He, L., Li, W., Xu, C., Zhang, J., Wang, D.,et al. (2021) GDF15 Induces Immunosuppression via CD48 on Regulatory T Cells in Hepatocellular Carcinoma.The Journal for ImmunoTherapy of Cancer, 9, e002787. https://doi.org/10.1136/jitc-2021-002787 |
[66] |
Nishikawa, A., Suzuki, K., Kassai, Y., Gotou, Y., Takiguchi, M., Miyazaki, T.,et al. (2016) Identification of Definitive Serum Biomarkers Associated with Disease Activity in Primary Sjögren’s Syndrome.Arthritis Research & Therapy, 18, Article 106. https://doi.org/10.1186/s13075-016-1006-1 |