[1] |
Monti, D., Ottolina, G., Carrea, G.,et al. (2011) Redox Reactions Catalyzed by Isolated Enzymes.Chemical Reviews, 111, 4111-4140. https://doi.org/10.1021/cr100334x |
[2] |
Ali, I., Ullah, N., McArthur, M.A.,et al. (2018) Direct Electrochemical Regeneration of Enzymatic Cofactor 1,4-NADH on a Cathode Composed of Multi-Walled Carbon Nanotubes Decorated with Nickel Nanoparticles.TheCanadian Journal of Chemical Engineering, 96, 68-73. https://doi.org/10.1002/cjce.22886 |
[3] |
Wang, X., Saba, T., Yiu, H.H.P.,et al. (2017) Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways.Chem, 2, 621-654. https://doi.org/10.1016/j.chempr.2017.04.009 |
[4] |
Wu, H., Tian, C., Song, X.,et al. (2013) Methods for the Regeneration of Nicotinamide Coenzymes.Green Chemistry,15, 1773-1789. https://doi.org/10.1039/c3gc37129h |
[5] |
Wang, X. and Yiu, H.H.P. (2016) Heterogeneous Catalysis Mediated Cofactor NADH Regeneration for Enzymatic Reduction.ACS Catalysis, 6, 1880-1886. https://doi.org/10.1021/acscatal.5b02820 |
[6] |
Goldberg, K., Schroer, K., Lütz, S.,et al. (2007) Biocatalytic Ketone Reduction—A Powerful Tool for the Production of Chiral Alcohols—Part I: Processes with Isolated Enzymes.Applied Microbiology and Biotechnology, 76, 237-248. https://doi.org/10.1007/s00253-007-1002-0 |
[7] |
Raunio, R. and Lilius, E.M. (1971) Effect of Dithionite on Enzyme Activitiesin Vivo.Enzymologia, 40, 360-368. |
[8] |
Lee, Y.S., Gerulskis, R. and Minteer, S.D. (2022) Advances in Electrochemical Cofactor Regeneration: Enzymatic and Non-Enzymatic Approaches.Current Opinion in Biotechnology, 73, 14-21. https://doi.org/10.1016/j.copbio.2021.06.013 |
[9] |
Wichmann, R. and Vasic-Racki, D. (2005) Cofactor Regeneration at the Lab Scale. In: Kragl, U., Ed.,Technology Transfer in Biotechnology:From Lab to Industry to Production, Springer, Berlin, 225-260. https://doi.org/10.1007/b98911 |
[10] |
Ali, I., Gill, A. and Omanovic, S. (2012) Direct Electrochemical Regeneration of the Enzymatic Cofactor 1,4-NADH Employing Nano-Patterned Glassy Carbon/Pt and Glassy Carbon/Ni Electrodes.Chemical Engineering Journal, 188, 173-180. https://doi.org/10.1016/j.cej.2012.02.005 |
[11] |
Torres Pazmiño, D.E., Winkler, M., Glieder, A.,et al. (2010) Monooxygenases as Biocatalysts: Classification, Mechanistic Aspects and Biotechnological Applications.Journal of Biotechnology, 146, 9-24. https://doi.org/10.1016/j.jbiotec.2010.01.021 |
[12] |
Wichmann, R. and Vasic-Racki, D. (2005) Cofactor Regeneration at the Lab Scale. In: Kragl, U., Ed.,TechnologyTransfer in Biotechnology, Springer, Berlin, 225-260. https://doi.org/10.1007/b98911 |
[13] |
McQuillan, R.V., Stevens, G.W. and Mumford, K.A. (2018) The Electrochemical Regeneration of Granular Activated Carbons: A Review.Journal of Hazardous Materials, 355, 34-49. https://doi.org/10.1016/j.jhazmat.2018.04.079 |
[14] |
Narbaitz, R.M. and Cen, J. (1994) Electrochemical Regeneration of Granular Activated Carbon.Water Research, 28, 1771-1778. https://doi.org/10.1016/0043-1354(94)90250-X |
[15] |
Mohammed, F.M., Roberts, E.P.L., Hill, A.,et al. (2011) Continuous Water Treatment by Adsorption and Electrochemical Regeneration.Water Research, 45, 3065-3074. https://doi.org/10.1016/j.watres.2011.03.023 |
[16] |
Damian, A. and Omanovic, S. (2006) Electrochemical Reduction of NADon a Polycrystalline Gold Electrode.Journal of Molecular Catalysis A:Chemical, 253, 222-233. https://doi.org/10.1016/j.molcata.2006.03.020 |
[17] |
Kim, Y.H. and Yoo, Y.J. (2009) Regeneration of the Nicotinamide Cofactor Using a Mediator-Free Electrochemical Method with a Tin Oxide Electrode.Enzyme and Microbial Technology, 44, 129-134. https://doi.org/10.1016/j.enzmictec.2008.10.019 |
[18] |
Immanuel, S., Sivasubramanian, R., Gul, R.,et al. (2020) Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).Chemistry—An Asian Journal, 15, 4256-4270. https://doi.org/10.1002/asia.202001035 |
[19] |
Kim, J.H., Lee, M., Lee, J.S.,et al. (2012) Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis.Angewandte Chemie International Edition, 51, 517-520. https://doi.org/10.1002/anie.201103244 |
[20] |
Shi, Q., Yang, D., Jiang, Z.,et al. (2006) Visible-Light Photocatalytic Regeneration of NADH Using P-Doped TiO2Nanoparticles.Journal of Molecular Catalysis B:Enzymatic, 43, 44-48. https://doi.org/10.1016/j.molcatb.2006.06.005 |
[21] |
Liao, H.X., Jia, H.Y., Dai, J.R.,et al. (2021) Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations.ChemSusChem, 14, 1687-1691. https://doi.org/10.1002/cssc.202100184 |
[22] |
Lee, S.H., Nam, D.H. and Park, C.B. (2009) Screening Xanthene Dyes for Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photoenzymatic Synthesis.AdvancedSynthesis& Catalysis, 351, 2589-2594. https://doi.org/10.1002/adsc.200900547 |
[23] |
Taglieber, A., Schulz, F., Hollmann, F.,et al. (2008) Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations.ChemBioChem, 9, 565-572. https://doi.org/10.1002/cbic.200700435 |
[24] |
Wang, G.-L., Xu, J.-J. and Chen, H.-Y. (2009) Dopamine Sensitized Nanoporous TiO2Film on Electrodes: Photoelectrochemical Sensing of NADH under Visible Irradiation.Biosensors and Bioelectronics, 24, 2494-2498. https://doi.org/10.1016/j.bios.2008.12.031 |
[25] |
Hambourger, M., Kodis, G., Vaughn, M.D.,et al. (2009) Solar Energy Conversion in a Photoelectrochemical Biofuel Cell.Dalton Transactions, 45, 9979-9989. https://doi.org/10.1039/b912170f |
[26] |
Liao, Q., Liu, W. and Meng, Z. (2022) Strategies for Overcoming the Limitations of Enzymatic Carbon Dioxide Reduction.Biotechnology Advances, 60, Article ID: 108024. https://doi.org/10.1016/j.biotechadv.2022.108024 |
[27] |
Uppada, V., Bhaduri, S. and Noronha, S.B. (2014) Cofactor Regeneration—An Important Aspect of Biocatalysis.Current Science, 106, 946-957. |
[28] |
Hummel, W. (1999) Large-Scale Applications of NAD(P)-Dependent Oxidoreductases: Recent Developments.Trends in Biotechnology, 17, 487-492. https://doi.org/10.1016/S0167-7799(98)01207-4 |
[29] |
Marpani, F., Pinelo, M. and Meyer, A.S. (2017) Enzymatic Conversion of CO2to CH3OH via Reverse Dehydrogenase Cascade Biocatalysis: Quantitative Comparison of Efficiencies of Immobilized Enzyme Systems.BioChemical Engineering Journal, 127, 217-228. https://doi.org/10.1016/j.bej.2017.08.011 |
[30] |
Weckbecker, A., Gröger, H. and Hummel, W. (2010) Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. In: Wittmann, C. and Krull, R., Eds.,Biosystems Engineering I:Creating Superior Biocatalysts, Springer, Berlin, 195-242. https://doi.org/10.1007/10_2009_55 |
[31] |
Riebel, B.R., Gibbs, P.R., Wellborn, W.B.,et al. (2002) Cofactor Regeneration of NADfrom NADH: Novel Water—Forming NADH Oxidases.AdvancedSynthesis& Catalysis, 344, 1156-1168. |
[32] |
Shah, S., Agera, R., Sharma, P.,et al. (2018) Development of Biotransformation Process for Asymmetric Reduction with Novel Anti-Prelog NADH-Dependent Alcohol Dehydrogenases.Process Biochemistry, 70, 71-78. https://doi.org/10.1016/j.procbio.2018.04.016 |
[33] |
Peng, T., Tian, J., Zhao, Y.,et al. (2022) Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides.Angewandte Chemie International Edition in English, 61, E202209272. https://doi.org/10.1002/anie.202209272 |
[34] |
Rehn, G., Pedersen, A.T. and Woodley, J.M. (2016) Application of NAD(P)H Oxidase for Cofactor Regeneration in Dehydrogenase Catalyzed Oxidations.Journal of Molecular Catalysis B:Enzymatic, 134, 331-339. https://doi.org/10.1016/j.molcatb.2016.09.016 |
[35] |
Kratzer, R., Woodley, J.M. and Nidetzky, B. (2015) Rules for Biocatalyst and Reaction Engineering to Implement Effective, NAD(P)H-Dependent, Whole Cell Bioreductions.Biotechnology Advances, 33, 1641-1652. https://doi.org/10.1016/j.biotechadv.2015.08.006 |
[36] |
Wu, S., Snajdrova, R., Moore, J.C.,et al. (2021) Biocatalysis: Enzymatic Synthesis for Industrial Applications.Angewandte Chemie International Edition, 60, 88-119. https://doi.org/10.1002/anie.202006648 |
[37] |
Wang, Z., Sundara Sekar, B. and Li, Z. (2021) Recent Advances in Artificial Enzyme Cascades for the Production of Value-Added Chemicals.Bioresource Technology, 323, Article ID: 124551. https://doi.org/10.1016/j.biortech.2020.124551 |