[1] |
Luo, Y., Guo, W., Ngo, H., Nghiem, L., Hai, F., Zhang, J.,et al. (2014) A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment.Science of the Total Environment, 473-474, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065 |
[2] |
Adeel, M., Song, X., Wang, Y., Francis, D., Yang, Y.,et al. (2017) Environmental Impact of Estrogens on Human, Animal and Plant Life: A Critical Review.Environment International, 99, 107-119. https://doi.org/10.1016/j.envint.2016.12.010 |
[3] |
Vieno, N. and Sillanpaa, M. (2014) Fate of Diclofenac in Municipal Wastewater Treatment Plant—A Review.Environment International, 69, 28-39. https://doi.org/10.1016/j.envint.2014.03.021 |
[4] |
Bilkova, Z., Mala, J. and Hrich, K. (2019) Fate and Behaviour of Veterinary Sulphonamides under Denitrifying Conditions.Science of the Total Environment, 695, Article ID: 133824. https://doi.org/10.1016/j.scitotenv.2019.133824 |
[5] |
Grandclement, C., Seyssiecq, I., Piram, A., Wong, P., Vanot, G., Tiliacos, N.,et al. (2017) From the Conventional Biological Wastewater Treatment to Hybrid Processes, the Evaluation of Organic Micropollutant Removal: A Review.Water Research, 111, 297-317. https://doi.org/10.1016/j.watres.2017.01.005 |
[6] |
Quintana, J., Weiss, S. and Reemtsma, T. (2005) Pathway’s and Metabolites of Microbial Degradation of Selected Acidic Pharmaceutical and Their Occurrence in Municipal Wastewater Treated by a Membrane Bioreactor.Water Research, 39, 2654-2664. https://doi.org/10.1016/j.watres.2005.04.068 |
[7] |
Kassotaki, E., Buttiglieri, G., Ferrando, L., Rodriguez, I. and Pijuan, M. (2016) Enhanced Sulfamethoxazole Degradation through Ammonia Oxidizing Bacteria Co-Metabolism and Fate of Transformation Products.Water Research, 94, 111-119. https://doi.org/10.1016/j.watres.2016.02.022 |
[8] |
Wang, B., Ni, B., Yuan, Z. and Guo, J. (2019) Cometabolic Biodegradation of Cephalexin by Enriched Nitrifying Sludge: Process Characteristics, Gene Expression and Product Biotoxicity.Science of the Total Environment, 672, 275-282. https://doi.org/10.1016/j.scitotenv.2019.03.473 |
[9] |
Iasur-Kruh, L., Hadar, Y. and Minz, D. (2011) Isolation and Bioaugmentation of an Estradiol-Degrading Bacterium and Its Integration into a Mature Biofilm.Applied and Environmental Microbiology, 77, 3734-3740. https://doi.org/10.1128/AEM.00691-11 |
[10] |
Liu, H., Lam, J., Li, W., Yu, H. and Lam, P. (2017) Spatial Distribution and Removal Performance of Pharmaceuticals in Municipal Wastewater Treatment Plants in China.Science of the Total Environment, 586, 1162-1169. https://doi.org/10.1016/j.scitotenv.2017.02.107 |
[11] |
Falas, P., Wick, A., Castronovo, S., Habermacher, J., Ternes, T. and Joss, A. (2016) Tracing the Limits of Organic Micropollutant Removal in Biological Wastewater Treatment.Water Research, 95, 240-249. https://doi.org/10.1016/j.watres.2016.03.009 |
[12] |
Xu, Y., Yuan, Z. and Ni, B. (2016) Biotransformation of Pharmaceuticals by Ammonia Oxidizing Bacteria in Wastewater Treatment Processes.Science of the Total Environment, 566, 796-805. https://doi.org/10.1016/j.scitotenv.2016.05.118 |
[13] |
Rattier, M., Reungoat, J., Keller, J. and Gernjak, W. (2014) Removal of Micropollutants during Tertiary Wastewater Treatment by Biofiltration: Role of Nitrifiers and Removal Mechanisms.Water Research, 54, 89-99. https://doi.org/10.1016/j.watres.2014.01.030 |
[14] |
Tran, N.H., Urase, T., Ngo, H., Hu, J. and Ong, S. (2013) Insight into Metabolic and Cometabolic Activities of Autotrophic and Heterotrophic Microorganisms in the Biodegradation of Emerging Trace Organic Contaminants.Bioresource Technology, 146, 721-731. https://doi.org/10.1016/j.biortech.2013.07.083 |
[15] |
Kolvenbach, B., Helbling, D., Kohler, H. and Corvini, P. (2014) Emerging Chemicals and the Evolution of Biodegradation Capacities and Pathways in Bacteria.Current Opinion in Biotechnology, 27, 8-14. https://doi.org/10.1016/j.copbio.2013.08.017 |
[16] |
Kim, M.,et al. (2020) Kinetics of Competitive Cometabolism under Aerobic Conditions.Water-Energy Nexus, 3, 62-70. https://doi.org/10.1016/j.wen.2020.04.001 |
[17] |
Fernandez-Fontaina, E., Gomes, I., Aga, D., Omil, F., Lema, J. and Carballa, M. (2016) Biotransformation of Pharmaceuticals under Nitrification, Nitratation and Heterotrophic Conditions.Science of the Total Environment, 541, 1439-1447. https://doi.org/10.1016/j.scitotenv.2015.10.010 |
[18] |
Xu, Y., Radjenovic, J., Yuan, Z. and Ni, B. (2017) Biodegradation of Atenolol by an Enriched Nitrifying Sludge: Products and Pathways.Chemical Engineering Journal, 312, 351-359. https://doi.org/10.1016/j.cej.2016.11.153 |
[19] |
Khunjar, W., Mackintosh, S., Skotnicka, J., Baik, S., Aga, D. and Love, N. (2011) Elucidating the Relative Roles of Ammonia Oxidizing and Heterotrophic Bacteria during the Biotransformation of 17α-Ethinylestradiol and Trimethoprim.Environmental Science & Technology, 45, 3605-3612. https://doi.org/10.1021/es1037035 |
[20] |
Soliman, M. and Eldyasti, A. (2018) Ammonia-Oxidizing Bacteria (AOB): Opportunities and Applications—A Review.Reviews in Environmental Science and Bio-Technology, 17, 285-321. https://doi.org/10.1007/s11157-018-9463-4 |
[21] |
Stephen, J.,et al. (1996) Molecular Diversity of Soil and Marine 16S RRNA Gene Sequences Related to Beta-Subgroup Ammonia-Oxidizing Bacteria.Applied & Environmental Microbiology, 62, 4147-4154. https://doi.org/10.1128/aem.62.11.4147-4154.1996 |
[22] |
Andreas, P., Rath, G. and Koops, H.P. (1996) Phylogenetic Diversity within the Genus Nitrosomonas.Systematic & Applied Microbiology, 3, 344-351. https://doi.org/10.1016/S0723-2020(96)80061-0 |
[23] |
Teske, A, Alm, E., Regan, J.,et al. (1994) Evolutionary Relationships among Ammonia-and Nitrite-Oxidizing Bacteria.Journal of Bacteriology, 176, 6623-6630. https://doi.org/10.1128/jb.176.21.6623-6630.1994 |
[24] |
Harms, G., Layton, A.C.,et al. (2003) Real-Time PCR Quantification of Nitrifying Bacteria in a Municipal Wastewater Treatment Plant.Environmental Science & Technology, 37, 343-351. https://doi.org/10.1021/es0257164 |
[25] |
Ye, L. and Zhang, T. (2011) Ammonia-Oxidizing Bacteria Dominates over Ammonia-Oxidizing Archaea in a Saline Nitrification Reactor under Low DO and High Nitrogen Loading.Biotechnology and Bioengineering, 108, 2544-2552. https://doi.org/10.1002/bit.23211 |
[26] |
Alves, R., Minh, B., Urich, T., Von Haeseler, A. and Schleper, C. (2018) Unifying the Global Phylogeny and Environmental Distribution of Ammonia-Oxidising Archaea Based on AmoA Genes.Nature Communications, 9, Article No. 1517. https://doi.org/10.1038/s41467-018-03861-1 |
[27] |
Limpiyakorn, T., Fuerhacker, M., Haberl, R., Chodanon, T., Srithep, P. and Sonthiphand, P. (2013) AmoA-Encoding Archaea in Wastewater Treatment Plants: A Review.Applied Microbiology and Biotechnology, 97, 1425-1439. https://doi.org/10.1007/s00253-012-4650-7 |
[28] |
Ren, Y., Ngo, H., Guo, W., Wang, D., Peng, L., Ni, B.,et al. (2020) New Perspectives on Microbial Communities and Biological Nitrogen Removal Processes in Wastewater Treatment Systems.Bioresource Technology, 297, Article ID: 122491. https://doi.org/10.1016/j.biortech.2019.122491 |
[29] |
Martens, W., Berube, P., Urakawa, H., De La Torre, J., Stahl and D. (2009) Ammonia Oxidation Kinetics Determine Niche Separation of Nitrifying Archaea and Bacteria.Nature, 461, 976-979. https://doi.org/10.1038/nature08465 |
[30] |
Van Kessel, A., Nielsen, P., Den Camp, H., Kartal, B.,et al. (2015) Complete Nitrification by a Single Microorganism.Nature, 528, 555-562. https://doi.org/10.1038/nature16459 |
[31] |
Daims, H., Lebedeva, E., Pjevac, P., Han, P., Herbold, C., Albertsen, M.,et al. (2015) Complete Nitrification by Nitrospira Bacteria.Nature, 528, 504-512. https://doi.org/10.1038/nature16461 |
[32] |
Fowler, S., Palomo, A., Dechesne, A., Mines, P., Smets, B.,et al. (2018) ComammoxNitrospiraAre Abundant Ammonia Oxidizers in Diverse Groundwater-Fed Rapid Sand Filter Communities.Environmental Microbiology, 20, 1002-1015. https://doi.org/10.1111/1462-2920.14033 |
[33] |
Annavajhala, M., Kapoor, V., Santo, J. and Chandran, K. (2018) Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems.Environmental Science & Technology Letters, 5, 110-116. https://doi.org/10.1021/acs.estlett.7b00577 |
[34] |
Orellana, L., Chee, J., Sanford, R., Loffler, F. and Konstantinidis, K. (2018) Year-Round Shotgun Metagenomes Reveal Stable Microbial Communities in Agricultural Soils and Novel Ammonia Oxidizers Responding to Fertilization.Applied and Environmental Microbiology, 84, e01646-17. https://doi.org/10.1128/AEM.01646-17 |
[35] |
Han, P., Yu, Y., Zhou, L., Tian, Z., Li, Z., Hou, L.,et al. (2019) Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium Nitrospirainopinata.Environmental Science & Technology, 53, 8695-8705. https://doi.org/10.1021/acs.est.9b01037 |
[36] |
Sauder, L., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P., Wagner, M.,et al. (2017) Cultivation and Characterization ofCandidatusNitrosocosmicus Exaquare, an Ammonia-Oxidizing Archaeon from a Municipal Wastewater Treatment System.The ISME Journal, 11, 1142-1157. https://doi.org/10.1038/ismej.2016.192 |
[37] |
Miyaji, A., Miyoshi, T., Motokura, K. and Baba, T. (2015) Discrimination of the Prochiral Hydrogens at the C-2 Position of N-Alkanes by the Methane/Ammonia Monooxygenase Family Proteins.Organic & Biomolecular Chemistry, 13, 8261-8270. https://doi.org/10.1039/C5OB00640F |
[38] |
Wu, G., Geng, J., Li, S., Li, J., Fu, Y., Xu, K.,et al. (2019) Abiotic and Biotic Processes of Diclofenac in Enriched Nitrifying Sludge: Kinetics, Transformation Products and Reactions.Science of the Total Environment, 683, 80-88. https://doi.org/10.1016/j.scitotenv.2019.05.216 |
[39] |
Wang, B., Ni, B., Yuan, Z. and Guo, J. (2019) Insight into the Nitrification Kinetics and Microbial Response of an Enriched Nitrifying Sludge in the Biodegradation of Sulfadiazine.Environmental Pollution, 255, Article ID: 113160. https://doi.org/10.1016/j.envpol.2019.113160 |
[40] |
Dawas, A., Gur, S., Lerman, S., Sabbah, I. and Dosoretz, C. (2014) Co-Metabolic Oxidation of Pharmaceutical Compounds by a Nitrifying Bacterial Enrichment.Bioresource Technology, 167, 336-342. https://doi.org/10.1016/j.biortech.2014.06.003 |
[41] |
Kimura, K., Hara, H. and Watanabe, Y. (2007) Elimination of Selected Acidic Pharmaceuticals from Municipal Wastewater by an Activated Sludge System and Membrane Bioreactors.Environmental Science & Technology, 41, 3708-3714. https://doi.org/10.1021/es061684z |
[42] |
Petrie, B., Barden, R. and Kasprzyk, B. (2015) A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring.Water Research, 72, 3-27. https://doi.org/10.1016/j.watres.2014.08.053 |