[1] |
Prausnitz, M.R. and Langer, R. (2008) Transdermal Drug Delivery. Nature Biotechnology, 26, 1261-1268. https://doi.org/10.1038/nbt.1504 |
[2] |
Prausnitz, M.R., Mitragotri, S. and Langer, R. (2004) Current Status and Future Potential of Transdermal Drug Delivery. Nature Reviews Drug Discovery, 3, 115-124. https://doi.org/10.1038/nrd1304 |
[3] |
Al-Japairai, K.A.S., Hamed, A.S., Reddy, V.J., Rebhi, H.A., Motia, A. and Subashini, R. (2020) Current Trends in Polymer Microneedle for Transdermal Drug Delivery. International Journal of Pharmaceutics, 587, Article ID: 119673. https://doi.org/10.1016/j.ijpharm.2020.119673 |
[4] |
Bariya, S.H., Gohel, M.C., Mehta, T.A. and Sharma, O.P. (2012) Microneedles: An Emerging Transdermal Drug Delivery System. Journal of Pharmacy and Pharmacology, 64, 11-29. https://doi.org/10.1111/j.2042-7158.2011.01369.x |
[5] |
Tariq, N., Ashraf, M.W. and Tayyaba, S. (2022) A Review on Solid Microneedles for Biomedical Applications. Journal of Pharmaceutical Innovation, 17, 1464-1483. https://doi.org/10.1007/s12247-021-09586-x |
[6] |
Nagarkar, R., Singh, M., Nguyen, H.X. and Jonnalagadda, K. (2020) A Review of Recent Advances in Microneedle Technology for Transdermal Drug Delivery. Journal of Drug Delivery Science and Technology, 59, Article ID: 101923. https://doi.org/10.1016/j.jddst.2020.101923 |
[7] |
Witting, M., Obst, K., Pietzsch, M., Friess, W. and Hedtrich, S. (2015) Feasibility Study for Intraepidermal Delivery of Proteins Using a Solid Microneedle Array. International Journal of Pharmaceutics, 486, 52-58. https://doi.org/10.1016/j.ijpharm.2015.03.046 |
[8] |
Kanakaraj, U. and Lhaden, T. (2015) Analysis of Structural Mechanics of Solid Microneedle Using COMSOL Software. 2015 International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, 19-20 March 2015, 1-5. https://doi.org/10.1109/ICIIECS.2015.7193243 |
[9] |
Li, C.G., Lee, C.Y., Lee, K. and Jung, H. (2013) An Optimized Hollow Microneedle for Minimally Invasive Blood Extraction. Biomedical Microdevices, 15, 17-25. https://doi.org/10.1007/s10544-012-9683-2 |
[10] |
Cárcamo-Martínez, Á., Mallon, B., Domínguez-Robles, J., Vora, L.K., Anjani, Q.K. and Donnelly, R.F. (2021) Hollow Microneedles: A Perspective in Biomedical Applications. International Journal of Pharmaceutics, 599, Article ID: 120455. https://doi.org/10.1016/j.ijpharm.2021.120455 |
[11] |
Martanto, W., Moore, J.S., Kashlan, O., Kamath, R., Wang, P.M., O’Neal, J.M. and Prausnitz, M.R. (2006) Microinfusion Using Hollow Microneedles. Pharmaceutical Research, 23, 104-113. https://doi.org/10.1007/s11095-005-8498-8 |
[12] |
Daugimont, L., Baron, N., Vandermeulen, G., Pavselj, N., Miklavcic, D., Jullien, M.-C., et al. (2010) Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. The Journal of Membrane Biology, 236, 117-125. https://doi.org/10.1007/s00232-010-9283-0 |
[13] |
Juster, H., Van Der Aar, B. and De Brouwer, H. (2019) A Review on Microfabrication of Thermoplastic Polymer‐Based Microneedle Arrays. Polymer Engineering & Science, 59, 877-890. https://doi.org/10.1002/pen.25078 |
[14] |
Babity, S., Laszlo, E. and Brambilla, D. (2021) Polymer-Based Microneedles for Decentralized Diagnostics and Monitoring: Concepts, Potentials, and Challenges. Chemistry of Materials, 33, 7148-7159. https://doi.org/10.1021/acs.chemmater.1c01866 |
[15] |
Zhuang, J., Wu, D.-M., Xu, H., Huang, Y., Liu, Y. and Sun, J.-Y. (2019) Edge Effect in Hot Embossing and Its Influence on Global Pattern Replication of Polymer-Based Microneedles. International Polymer Processing, 34, 231-238. https://doi.org/10.3139/217.3726 |
[16] |
Bhatnagar, S., Gadeela, P.R., Thathireddy, P. and Venuganti, V.V.K. (2019) Micro-Needle-Based Drug Delivery: Materials of Construction. Journal of Chemical Sciences, 131, 1-28. https://doi.org/10.1007/s12039-019-1666-x |
[17] |
Bhatnagar, S., Kumari, P., Pattarabhiran, S.P. and Venuganti, V.V.K. (2018) Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies. Aaps Pharmscitech, 19, 1818-1826. https://doi.org/10.1208/s12249-018-1004-5 |
[18] |
Teymourian, H., Tehrani, F., Mahato, K. and Wang, J. (2021) Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials, 10, Article ID: 2002255. https://doi.org/10.1002/adhm.202002255 |
[19] |
Hassanin, H., Essa, K., Elshaer, A., Imbaby, M., El-Mongy, H.H. and El-Sayed, T.A. (2021) Micro-Fabrication of Ceramics: Additive Manufacturing and Conventional Technologies. Journal of Advanced Ceramics, 10, 1-27. https://doi.org/10.1007/s40145-020-0422-5 |
[20] |
Zhang, X.P., He, Y.T., Li, W.X., Chen, B.Z., Zhang, C.Y., Cui, Y. and Guo, X.D. (2022) An Update on Biomaterials as the Microneedle Matrixes for Biomedical Applications. Journal of Materials Chemistry B, 10, 6059-6077. https://doi.org/10.1039/D2TB00905F |
[21] |
Bystrova, S. and Luttge, R. (2011) Micromolding for Ceramic Microneedle Arrays. Microelectronic Engineering, 88, 1681-1684. https://doi.org/10.1016/j.mee.2010.12.067 |
[22] |
Kuo, S.-C. and Chou, Y. (2004) A Novel Polymer Microneedle Arrays and PDMS Micromolding Technique. Journal of Applied Science and Engineering, 7, 95-98. |
[23] |
Donnelly, R.F., Majithiya, R., Singh, T.R.R., Morrow, D.I.J., Garland, M.J., Demir, Y.K., et al. (2011) Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharmaceutical Research, 28, 41-57. https://doi.org/10.1007/s11095-010-0169-8 |
[24] |
Dardano, P., Caliò, A., Di Palma, V., Bevilacqua, M.F., Di Matteo, A. and De Stefano, L. (2015) A Photolithographic Approach to Polymeric Microneedles Array Fabrication. Materials, 8, 8661-8673. https://doi.org/10.3390/ma8125484 |
[25] |
Kathuria, H., Kochhar, J.S., Fong, M.H.M., Hashimoto, M., Iliescu, C., Yu, H. and Kang, L.F. (2015) Polymeric Microneedle Array Fabrication by Photolithography. JoVE (Journal of Visualized Experiments), 105, E52914. https://doi.org/10.3791/52914-v |
[26] |
Yuan, W., Chen, D.F., Sarabia-Estrada, R., Guerrero-Cázares, H., Li, D.W., Quiñones-Hinojosa, A. and Li, X.D. (2020) Theranostic OCT Microneedle for Fast Ultrahigh-Resolution Deep-Brain Imaging and Efficient Laser Ablation in Vivo. Science Advances, 6, Eaaz9664. https://doi.org/10.1126/sciadv.aaz9664 |
[27] |
Krieger, K.J., Bertollo, N., Dangol, M., Sheridan, J.T., Lowery, M.M. and O’Cearbhaill, E.D. (2019) Simple and Customizable Method for Fabrication of High-Aspect Ratio Microneedle Molds Using Low-Cost 3D Printing. Microsystems & Nanoengineering, 5, Article No. 42. https://doi.org/10.1038/s41378-019-0088-8 |
[28] |
Wu, M.X., Zhang, Y.J., Huang, H., Li, J.W., Liu, H.Y., Guo, Z.Y., Xue, L.J., Liu, S. and Lei, Y.F. (2020) Assisted 3D Printing of Microneedle Patches for Minimally Invasive Glucose Control in Diabetes. Materials Science and Engineering: C, 117, Article ID: 111299. https://doi.org/10.1016/j.msec.2020.111299 |
[29] |
Detamornrat, U., McAlister, E., Hutton, A.R.J., Larrañeta, E. and Donnelly, R.F. (2022) The Role of 3D Printing Technology in Microengineering of Microneedles. Small, 18, Article ID: 2106392. https://doi.org/10.1002/smll.202106392 |
[30] |
Soltani-Arabshahi, R., Wong, J.W., Duffy, K.L. and Powell, D.L. (2014) Facial Allergic Granulomatous Reaction and Systemic Hypersensitivity Associated with Microneedle Therapy for Skin Rejuvenation. JAMA Dermatology, 150, 68-72. https://doi.org/10.1001/jamadermatol.2013.6955 |
[31] |
Trautmann, A., Heuck, F., Denfeld, R., Ruther, P. and Paul, O. (2006) Detachable Silicon Microneedle Stamps for Allergy Skin Prick Testing. 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, 22-26 January 2006, 434-437. https://doi.org/10.1097/01.DSS.0000790428.70373.f6 |
[32] |
Chu, S., Foulad, D.P. and AtanaskovaMesinkovska, N. (2021) Safety Profile for Microneedling: A Systematic Review. Dermatologic Surgery, 47, 1249-1254. https://doi.org/10.1002/adtp.201900064 |
[33] |
Zan, P., Than, A., Duong, P.K., Song, J., Xu, C.H. and Chen, P. (2019) Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. Advanced Therapeutics, 2, Article ID: 1900064. |
[34] |
Xiang, Y.M., Lu, J.L., Mao, C.Y., Zhu, Y.Z., Wang, C.F., Wu, J., Liu, X.M., Wu, S.L., Kwan, K.Y.H., Cheung, K.M.C. and Yeung, K.W.K. (2023) Ultrasound-Triggered Interfacial Engineering-Based Microneedle for Bacterial Infection Acne Treatment. Science Advances, 9, Eadf0854. https://doi.org/10.1126/sciadv.adf0854 |
[35] |
Gill, H.S., Denson, D.D., Burris, B.A. and Prausnitz, M.R. (2008) Effect of Microneedle Design on Pain in Human Subjects. The Clinical Journal of Pain, 24, 585-594. https://doi.org/10.1097/AJP.0b013e31816778f9 |
[36] |
Xie, X., Pascual, C., Lieu, C., Oh, S., Wang, J., Zou, B.D., Xie, J.L., Li, Z.H., Xie, J., Yeomans, D.C., Wu, M.X. and Xie, X.M.S. (2017) Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS Nano, 11, 395-406. https://doi.org/10.1021/acsnano.6b06104 |
[37] |
Gulati, P., Pannu, S., Kumar, M., Bhatia, A., Mandal, U.K. and Chopra, S. (2022) Microneedles Based Drug Delivery Systems: An Updated Review. International Journal of Health Sciences, 6, 209-242. https://doi.org/10.53730/ijhs.v6n7.10813 |