[1] |
Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Ad-vances, 3, e1700782. https://doi.org/10.1126/sciadv.1700782 |
[2] |
Xin, J., Zhang, Q. Huang, J., Huang, R., et al. (2021) Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. Journal of Environmental Manage-ment, 296, Article ID: 113267. https://doi.org/10.1016/j.jenvman.2021.113267 |
[3] |
Vollmer, I., Jenks, M.J., Roelands, M.C., et al. (2020) Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, 15402-15423. https://doi.org/10.1002/anie.201915651 |
[4] |
Rorrer, N.A., Nichol-son, S., Carpenter, A., et al. (2019) Combining Reclaimed PET with Bio-Based Monomers Enables Plastics Upcy-cling. Joule, 3, 1006-1027. https://doi.org/10.1016/j.joule.2019.01.018 |
[5] |
Jiang, M.K., Wang, X.L., Xi, W.L., et al. (2024) Chemical Catalytic Upgrading of Polyethylene Terephthalate Plastic Waste into Value-Added Materials, Fuels and Chemicals. Science of the Total Environment, 912, Article ID: 169342. https://doi.org/10.1016/j.scitotenv.2023.169342 |
[6] |
Nisticò, R., (2020) Polyethylene Terephthalate (PET) in the Packaging Industry. Polymer Testing, 90, Article ID: 106707. https://doi.org/10.1016/j.polymertesting.2020.106707 |
[7] |
Shojaei, B., Abtahi, M. and Najafi, M. (2020) Chemical Recycling of PET: A Stepping-Stone toward Sustainability. Polymers Advanced Technologies, 31, 2912-2938. https://doi.org/10.1002/pat.5023 |
[8] |
Chu, M.Y., Liu, Y., Lou, X.X., et al. (2022) Rational Design of Chemical Catalysis for Plastic Recycling. ACS Catalysis, 12, 4659-4679. https://doi.org/10.1021/acscatal.2c01286 |
[9] |
Zheng, K., Wu, Y., Hu, Z., et al. (2023) Progress and Perspective for Conversion of Plastic Wastes into Valuable Chemicals. Chemical Society Reviews, 52, 8-29. https://doi.org/10.1039/D2CS00688J |
[10] |
George, N. and Kurian, T. (2014) Recent Developments in the Chemical Recycling of Postconsumer Poly (Ethylene Terephthalate) Waste. Industrial &Engineering Chemistry Research, 53, 14185-14198. https://doi.org/10.1021/ie501995m |
[11] |
Raheem, A.B., Noor, Z.Z., Hassan, A., et al. (2019) Current Devel-opments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. Journal of Cleaner Production, 225, 1052-1064. https://doi.org/10.1016/j.jclepro.2019.04.019 |
[12] |
Cano, I., Martin, C., Fernandes, J.A., et al. (2020) Para-magnetic Ionic Liquid-Coated SiO2@Fe3O4Nanoparticles—The Next Generation of Magnetically Recoverable Nanocatalysts Applied in the Glycolysis of PET. Applied Catalysis B: Environmental, 260, Article ID: 118110. https://doi.org/10.1016/j.apcatb.2019.118110 |
[13] |
Sheel, A. and Pant, D. (2018) 6-Chemical Depolymeriza-tion of Polyurethane Foams via Glycolysis and Hydrolysis. In: Thomas, S., et al., Eds., Recycling of Polyurethane Foams, William Andrew, Norwich, 67-75. https://doi.org/10.1016/B978-0-323-51133-9.00006-1 |
[14] |
Dutt, K. and Soni, R.K. (2013) A Review on Synthesis of Value Added Products from Polyethylene Terephthalate (PET) Waste. Polymer Science Series B, 55, 430-452. https://doi.org/10.1134/S1560090413070075 |
[15] |
Yoshioka, T., Okayama, N. and Okuwaki, A. (1998) Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 37, 336-340. https://doi.org/10.1021/ie970459a |
[16] |
Yoshioka, T., Motoki, T. and Okuwaki, A. (2001) Kinetics of Hy-drolysis of Poly (Ethylene Terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Industrial & Engineering Chemistry Research, 40, 75-79. https://doi.org/10.1021/ie000592u |
[17] |
Mancini, S.D. and Zanin, M. (2007) Post Consumer Pet Depolymeri-zation by Acid Hydrolysis. Polymer-Plastics Technology and Engineering, 46, 135-144. https://doi.org/10.1080/03602550601152945 |
[18] |
Yoshioka, T., Sato, T. and Okuwaki, A. (1944) Hydrolysis of Waste PET by Sulfuric Acid at 150°C for Achemical Recycling. Journal of Applied Polymer Science, 52, 1353-1355. https://doi.org/10.1002/app.1994.070520919 |
[19] |
Wang, Y.Q., Zhang, Y., Song, H.Y., et al. (2019) Zinc-Catalyzed Ester Bond Cleavage: Chemical Degradation of Polyethylene Terephthalate. Journal of Cleaner Production, 208, 1469-1475. https://doi.org/10.1016/j.jclepro.2018.10.117 |
[20] |
Liu, Y.P., Wang, M.X. and Pan, Z.Y. (2012) Catalytic De-polymerization of Polyethylene Terephthalate in Hot Compressed Water. Journal of Supercritical Fluids, 62, 226-231. https://doi.org/10.1016/j.supflu.2011.11.001 |
[21] |
Mishra, S., Zope, V.S. and Goje, A.S. (2002) Ki-netic and Thermodynamic Studies of Depolymerisation of Poly (Ethylene Terephthalate) by Saponification Reac-tion. Polymer International, 51, 1310-1315. https://doi.org/10.1002/pi.873 |
[22] |
Paliwal, N.R. and Mungray, A.K. (2013) Ultrasound Assisted Alkaline Hydrolysis of Poly (Ethylene Terephthalate) in Presence of Phase Transfer Catalyst. Polymer Degradation and Stability, 98, 2094-2101. https://doi.org/10.1016/j.polymdegradstab.2013.06.030 |
[23] |
Sako, T., Okajima, I., Sugeta, T., et al. (2000) Recovery of Constituent Monomers from Polyethylene Terephthalate with Supercritical Methanol. Polymer Inter-national, 32, 178-181. https://doi.org/10.1295/polymj.32.178 |
[24] |
Mishra, S. and Goje, A. (2003) Kinetic and Thermodynamic Study of Methanolysis of Poly (Ethylene Terephthalate) Waste Powder. Polymer International, 52, 337-342. https://doi.org/10.1002/pi.1147 |
[25] |
Du, J.T., Sun, Q., Zeng, X.F., et al. (2020) ZnO Nanodispersion as Pseudohomogeneous Catalyst for Alcoholysis of Polyethylene Terephthalate. Chemical Engineering Science, 220, Article ID: 115642. https://doi.org/10.1016/j.ces.2020.115642 |
[26] |
Kurokawa, H., Ohshima, M., Sugiyama, K., et al. (2003) Methanolysis of Polyethylene Terephthalate (PET) in the Presence of Aluminium Tiisopropoxide Catalyst to Form Dimethyl Terephthalate and Ethylene Glycol. Polymer Degradation and Stability, 79, 529-533. https://doi.org/10.1016/S0141-3910(02)00370-1 |
[27] |
Pham, D.D. and Cho, J. (2021) Low-Energy Catalytic Methanolysis of Poly (Ethylene Terephthalate). Green Chemistry, 23, 511-525. https://doi.org/10.1039/D0GC03536J |
[28] |
Wang, Q., Geng, Y.R., Lu, X.M., et al. (2015) First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly (Ethylene Terephthalate) (PET). ACS Sustainable Chemistry & Engineering, 3, 340-348. https://doi.org/10.1021/sc5007522 |
[29] |
Le, N.H., Van, T.T.N., Shong, B., et al. (2022) Low-Temperature Glycolysis of Polyethylene Terephthalate. ACS Sustainable Chemistry & Engineering, 10, 17261-17273. https://doi.org/10.1021/acssuschemeng.2c05570 |
[30] |
Shirazimoghaddam, S., Amin, I., Albanese, J.A.F., et al. (2023) Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts. ACS Engineering Au, 3, 37-44. https://doi.org/10.1021/acsengineeringau.2c00029 |
[31] |
Fehér, Z., Kiss, J., Kisszékelyi, P., et al. (2022) Optimisation of PET Glycolysis by Applying Recyclable Heterogeneous Organocatalysts. Green Chemistry, 24, 8447-8459. https://doi.org/10.1039/D2GC02860C |
[32] |
Wang, Q., Yao, X.Q., Geng, Y.R., et al. (2015) Deep Eutectic Solvents as Highly Active Catalysts for the Fast and Mild Glycolysis of Poly (Ethylene Terephthalate) (PET). Green Chemistry, 17, 2473-2479. https://doi.org/10.1039/C4GC02401J |
[33] |
Parab, Y.S., Shah, R.V. and Shukla, S.R. (2012) Microwave Irra-diated Synthesis and Characterization of 1, 4-Phenylene Bis-Oxazoline Form Bis-(2-Hydroxyethyl) Terephthalamide Obtained by Depolymerization of Poly (Ethylene Terephthalate) (PET) Bottle Wastes. Current Chemistry Letters, 1, 81-90. https://doi.org/10.5267/j.ccl.2012.3.003 |
[34] |
Palekar, V.S., Shah, R.V. and Shukla, S.R. (2012) Ionic Liq-uid-Catalyzed Aminolysis of Poly (Ethylene Terephthalate) Waste. Journal of Applied Polymer Science, 126, 1174-1181. https://doi.org/10.1002/app.36878 |
[35] |
More, A.P., Kute, R.A. and Mhaske, S.T. (2014) Chemical Conversion of PET Waste Using Ethanolamine to Bis (2-Hydroxyethyl) Terephthalamide (BHETA) through Ami-nolysis and a Novel Plasticizer for PVC. Iranian Polymer Journal, 23, 59-67. https://doi.org/10.1007/s13726-013-0200-0 |
[36] |
Shukla, S.R. and Harad, A.M. (2006) Aminolysis of Poly-ethylene Terephthalate Waste. Polymer Degradation and Stability, 91, 1850-1854. https://doi.org/10.1016/j.polymdegradstab.2005.11.005 |
[37] |
Vinitha, V., Preeyanghaa, M., Anbarasu, M., et al. (2022) Aminolytic Depolymerization of Polyethylene Terephthalate Wastes Using Sn-Doped ZnO Nanoparticles. Journal of Polymers and the Environment, 30, 3566-3581. https://doi.org/10.1007/s10924-022-02455-9 |
[38] |
Ye, M.X., Li, Y.R., Yang, Z.R., et al. (2023) Rutheni-um/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angewandte Chemie International Edition, 62, e202301024. https://doi.org/10.1002/anie.202301024 |
[39] |
Jing, Y.X., Wang, Y.Q., Furukawa, S., et al. (2021) Towards the Circular Economy: Converting Aromatic Plastic Waste back to Arenes over Ru/Nb2O5 Catalyst. Angewandte Chemie International Edition, 60, 5527-5535. https://doi.org/10.1002/anie.202011063 |
[40] |
Tang, H., Li, N., Li, G.Y., et al. (2019) Synthesis of Gasoline and Jet Fuel Range Cycloalkanes and Aromatics from Poly (Ethylene Terephthalate) Waste. Green Chemistry, 21, 2709-2719. https://doi.org/10.1039/C9GC00571D |
[41] |
Hongkailers, S., Jing, Y.X., Wang, Y.Q., et al. (2021) Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem, 14, 4330-4339. https://doi.org/10.1002/cssc.202100956 |
[42] |
Gao, Z.W., Ma, B., Chen, S., et al. (2022) Converting Waste PET Plastics into Automobile Fuels and Antifreeze Components. Nature Communications, 13, Article No. 3343. https://doi.org/10.1038/s41467-022-31078-w |