[1] |
Sakuma, J., Asakawa, Y. and Obara, M. (2004) Generation of 5-W Deep-UV Continuous-Wave Radiation at 266 nm by an External Cavity with a CsLiB6O10 Crystal. Optics Letters, 29, 92-94. https://doi.org/10.1364/OL.29.000092 |
[2] |
Mizell, G.J. (1999) 355-nm CW Laser Emission Using a Con-tact-Bonded Crystal Assembly Pumped with a 1-W 808-nm Diode. Laser Material Crystal Growth and Nonlinear Materials and Devices, 3610, 54-56. https://doi.org/10.1117/12.349219 |
[3] |
Li, F.Q., Shi, Z., Li, Y.M., et al. (2011) Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm. Chinese Physics Letters, 28, Article ID: 124205. https://doi.org/10.1088/0256-307X/28/12/124205 |
[4] |
Strössner, U., Peters, A., Mlynek, J., et al. (1999) Sin-gle-Frequency Continuous-Wave Radiation from 0.77 to 1.73 µM Generated by a Green-Pumped Optical Parametric Oscillator with Periodically Poled LiTaO3. Optics Letters, 24, 1602-1604. https://doi.org/10.1364/OL.24.001602 |
[5] |
Engler, S., Ramsayer, R. and Poprawe, R. (2011) Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers. Physics Procedia, 12, 339-346. https://doi.org/10.1016/j.phpro.2011.03.142 |
[6] |
Zhao, S., Wei, H., Zhu, M., et al. (2016) Green Laser Interferometric Metrology System with Sub-Nanometer Periodic Nonlinearity. Applied Optics, 55, 3006-3011. https://doi.org/10.1364/AO.55.003006 |
[7] |
Pricking, S., Dold, E.M., Kaiser, E., et al. (2020) 2 KW CW Laser in the Green Wavelength Regime for Copper Welding. In: Clarkson, W.A. and Shori, R.K., Eds., Solid State Lasers XXIX: Technology and Devices, SPIE, San Francisco, 56. https://doi.org/10.1117/12.2546224 |
[8] |
Yin, Q., Lu, H., Su, J., et al. (2016) High Power Single-Frequency and Frequency-Doubled Laser with Active Compensation for the Thermal Lens Effect of Terbium Gallium Garnet Crystal. Optics Letters, 41, 2033-2036. https://doi.org/10.1364/OL.41.002033 |
[9] |
Chen, C., Wu, Y., Jiang, A., et al. (1989) New Nonlinear-Optical Crystal: LiB3O5. Journal of the Optical Society of America B, 6, 616-621. https://doi.org/10.1364/JOSAB.6.000616 |
[10] |
Ukachi, T., Lane, R.J., Bosenberg, W.R., et al. (1990) Measurements of Noncritically Phase-Matched Second-Harmonic Generation in a LiB3O5 Crystal. Applied Physics Letters, 57, 980-982. https://doi.org/10.1063/1.104275 |
[11] |
Jarrett, S.M., Shellikeri, G.P. and Varela, O. (2010) A 200 MW, CW, 355 nm Laser Based on DPSS Side Pumped, Internally Frequency Tripled Technology. Solid State Lasers XIX: Technology and Devices, 7578, 193-200. https://doi.org/10.1117/12.854939 |
[12] |
Chuangtian, C., Bochang, W., Aidong, J., et al. (1985) A New-Type Ultraviolet SHG Crystal——β-BaB2O4. Science in China Series B-Chemistry, Biological, Agricultural, Medical & Earth Sciences, 28, 235-243. |
[13] |
Masuda, H., Kimura, K., Eguchi, N., et al. (2001) All-Solid-State, Continuous-Wave, 195 nm Light Generation in β-BaB2O4. Advanced Solid-State Lasers (2001), Paper WA6. Optica Publishing Group, Washington DC, WA6. https://doi.org/10.1364/ASSL.2001.WA6 |
[14] |
Boyd, G.D., Miller, R.C., Nassau, K., et al. (1964) LiNbO3: An Efficient Phase Matchable Nonlinear Optical Material. Applied Physics Letters, 5, 234-236. https://doi.org/10.1063/1.1723604 |
[15] |
Kim, Y.S. and Smith, R.T. (1969) Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals. Journal of Applied Physics, 40, 4637-4641. https://doi.org/10.1063/1.1657244 |
[16] |
Shukla, M.K., Kumar, S. and Das, R. (2015) Single-Pass Multi-Watt Second-Harmonic-Generation in Congruent and Stoichiometric LiTaO3. IEEE Photonics Technology Letters, 27, 1379-1382. https://doi.org/10.1109/LPT.2015.2421643 |
[17] |
Gapontsev, V., Avdokhin, A., Kadwani, P., et al. (2014) SM Green Fiber Laser Operating in CW and QCW Regimes and Producing over 550W of Average Output Power. SPIE LASE, San Francisco, 8964, Article ID: 896407. https://doi.org/10.1117/12.2058733 |
[18] |
Ahmadi, P., Creeden, D., Aschaffenburg, D., et al. (2020) Generating KW Laser Light at 532 nm via Second Harmonic Generation of a High Power Yb-Doped Fiber Amplifier. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, SPIE, San Francisco, 40. https://doi.org/10.1117/12.2546377 |
[19] |
Su, M., You, Y., Quan, Z., et al. (2021) 321 W High-Efficiency Continuous-Wave Green Laser Produced by Single-Pass Frequency Doubling of Narrow-Linewidth Fiber Laser. Applied Optics, 60, Article No. 3836. https://doi.org/10.1364/AO.422514 |
[20] |
苏梦琪, 尤阳, 全昭, 等. 高效率单通倍频实现610 W连续波单模绿光输出[J]. 中国激光, 2021, 48(13): 213-216. |
[21] |
Chang-Seok, K. and Kang, J.U. (2001) Second Harmonic Generation of Polarization Maintaining Yb-Doped Fiber Laser Using Periodically-Poled Lithium Niobate. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Diego, 12-13 November 2001, 58-59. |
[22] |
Shirakawa, A., Hiwada, K., Hasegawa, S., et al. (2005) All-Fiber Linearly-Polarized Yb-Doped Fiber Laser Yielding 2.2-W Green Second Harmonics. 2005 Pacific Rim Conference on Lasers & Electro-Optics, Tokyo, 11-14 July 2005, 410-411. |
[23] |
Samanta, G.K., Kumar, S.C., Mathew, M., et al. (2008) High-Power, Continuous-Wave, Second-Harmonic Generation at 532 nm in Periodically Poled KTiOPO4. Optics Letters, 33, 2955-2957. https://doi.org/10.1364/OL.33.002955 |
[24] |
Sinha, S., Hum, D.S., Urbanek, K.E., et al. (2008) Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal. Journal of Lightwave Technology, 26, 3866-3871. https://doi.org/10.1109/JLT.2008.928396 |
[25] |
Samanta, G.K., Kumar, S.C. and Ebrahim-Zadeh, M. (2009) Stable, 9.6 W, Continuous-Wave, Single-Frequency, Fiber-Based Green Source at 532 nm. Optics Letters, 34, 1561-1563. https://doi.org/10.1364/OL.34.001561 |
[26] |
An, H.B., Su, B.H., Niu, L.H., et al. (2012) Green Generation by Single-Pass Frequency-Doubling in a Periodically Poled MgO:LiNbO3 at Room Temperature. Advanced Materials Research, 622-623, 1258-1261. https://doi.org/10.4028/www.scientific.net/AMR.622-623.1258 |
[27] |
焦梦丽, 吕新杰, 刘驰, 等. 周期极化钽酸锂倍频窄谱线全光纤连续激光放大器特性[J]. 中国激光, 2012, 39(3): 30-34. |
[28] |
Samanta, G.K., Chaitanya, K.S., Devi, K., et al. (2012) High-Power, Continuous-Wave Ti:Sapphire Laser Pumped by Fiber-Laser Green Source at 532 nm. Optics and Lasers in Engineering, 50, 215-219. https://doi.org/10.1016/j.optlaseng.2011.09.001 |
[29] |
郝丽云, 苏岑, 漆云凤, 等. 基于PPMgO:LN晶体的连续波全光纤激光器倍频特性[J]. 中国激光, 2013, 40(6): 76-81. |
[30] |
Lai, R., Hsu, C.S., Hsu, C.W., et al. (2019) Single Pass 7 Watts Continuous Wave 532 nm Generation by Focusing Optimized Second Harmonic Generation in MgO:PPLN. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, SPIE, San Francisco, 4. https://doi.org/10.1117/12.2510795 |
[31] |
Zeng, X., Cui, S., Qian, J., et al. (2020) 10 W Low-Noise Green Laser Generation by the Single-Pass Frequency Doubling of a Single-Frequency Fiber Amplifier. Laser Physics, 30, Article ID: 075001. https://doi.org/10.1088/1555-6611/ab908a |
[32] |
Dixneuf, C., Guiraud, G., Ye, H., et al. (2021) Robust 17 W Single-Pass Second-Harmonic-Generation at 532 nm and Relative-Intensity-Noise Investigation. Optics Letters, 46, 408-411. https://doi.org/10.1364/OL.415532 |
[33] |
Avdokhin, A.V., Gapontsev, V.P. and Grapov, Y.S. (2012) 170W Continuous-Wave Single-Frequency Single-Mode Green Fiber Laser. Fiber Lasers IX: Technology, Systems, and Applications, 8237, 19-20. |
[34] |
Meier, T., Willke, B. and Danzmann, K. (2010) Continuous-Wave Sin-gle-Frequency 532 nm Laser Source Emitting 130 W into the Fundamental Transversal Mode. Optics Letters, 35, 3742-3744. https://doi.org/10.1364/OL.35.003742 |
[35] |
许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7W连续单频绿光技术研究[J]. 中国激光, 2016, 43(11): 64-68. |
[36] |
Cui, S., Zhang, L., Jiang, H., et al. (2017) 33 W Continuous-Wave Single-Frequency Green Laser by Frequency Doubling of a Single-Mode YDFA. Chinese Optics Letters, 15, Article ID: 041402. https://doi.org/10.3788/COL201715.041402 |
[37] |
Zeng, X., Cui, S., Cheng, X., et al. (2020) Resonant Frequency Doubling of Phase-Modulation-Generated Few-Frequency Fiber Laser. Optics Letters, 45, 4944-4947. https://doi.org/10.1364/OL.401348 |
[38] |
Sudmeyer, T., Imai, Y., Masuda, H., et al. (2008) Efficient 2nd and 4th Harmonic Generation of a Single-Frequency, Continuous-Wave Fiber Amplifier. Optics Express, 16, 1546-1551. https://doi.org/10.1364/OE.16.001546 |
[39] |
Chen, H.Z., Liu, X.P., Wang, X.Q., et al. (2018) 30 W, Sub-KHz Frequency-Locked Laser at 532 nm. Optics Express, 26, 33756-33763. https://doi.org/10.1364/OE.26.033756 |
[40] |
Wang, X.K., Zhou, Z.Y., Li, M.D., et al. (2022) Low-Noise and High-Power Second Harmonic Generation of 532 nm Laser for Trapping Ultracold Atoms. Review of Scientific In-struments, 93, Article ID: 123002. https://doi.org/10.1063/5.0117561 |