[1] |
Claisen, L. (1912) Uber Umlagerung von Phenol-allyl-athem in C-Allyl-phenole. Berichte der Deutschen Chemischen Gesellschaft, 45, 3157-3166. https://doi.org/10.1002/cber.19120450348 |
[2] |
Claisen, L. and Tietze, E. (1926) Uber Wanderung des Allyls usw. Liebigs Annalen der Chemie, 449, 81-101. https://doi.org/10.1002/jlac.19264490106 |
[3] |
Cheng, Q. (2017) Natural-Product-Inspired Dearomatization of Nitrobenzofurans. Chem, 3, 380-382. https://doi.org/10.1016/j.chempr.2017.08.012 |
[4] |
Zheng, C. and You, S.L. (2021) Advances in Catalytic Asymmetric Dearomatization. ACS Central Science, 7, 432-444. https://doi.org/10.1021/acscentsci.0c01651 |
[5] |
Narayan, A.R.H., et al. (2019) Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization. ACS Central Science, 6, 1010-1016. https://doi.org/10.1021/acscentsci.9b00163 |
[6] |
Aleksiev, M. and Mancheño, O.G. (2023) Enantioselective Dearomatization Reactions of Heteroarenes by Anion-Binding Organocatalysis. Chemical Communications, 59, 3360-3372. https://doi.org/10.1039/D2CC07101K |
[7] |
Massad, I. and Marek, I. (2021) Alkene Isomerization Revitalizes the Coates-Claisen Rearrangement. Angewandte Chemie International Edition, 60, 18509-18513. https://doi.org/10.1002/anie.202105834 |
[8] |
Gao, H.J., Miao, Y.H., Sun, W.N., Zhao, R., Xiao, X., Hua, Y.Z., Mei, G.J., et al. (2023) Diversity-Oriented Catalytic Asymmetric DearomatizationofIndoleswitho-Quinone Diimides. Advanced Science, 10, Article ID: 2305101. https://doi.org/10.1002/advs.202305101 |
[9] |
Wu, W.T., Zhang, L. and You, S.L. (2016) Catalytic Asymmetric Dearomatization (CADA) Reactions of Phenol and Aniline Derivatives. Chemical Society Reviews, 45, 1570-1580. https://doi.org/10.1039/C5CS00356C |
[10] |
Hu, N., Jung, H., Zheng, Y., Lee, J., Zhang, L., Ullah, Z., Meggers, E., et al. (2018) Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition. AngewandteChemie International Edition, 57, 6242-6246. https://doi.org/10.1002/anie.201802891 |
[11] |
Xia, Z.L., Xu-Xu, Q.F., Zheng, C. and You, S.L. (2020) Chiral Phosphoric Acid-Catalyzed Asymmetric Dearomatization Reactions. Chemical Society Reviews, 49, 286-300. https://doi.org/10.1039/C8CS00436F |
[12] |
McAtee, R.C., Noten, E.A. and Stephenson, C.R. (2020) Arenedearomatization through a Catalytic N-Centered Radical Cascade Reaction. Nature Communications, 11, 2528-2536. https://doi.org/10.1038/s41467-020-16369-4 |
[13] |
Peng, L., Xu, D., Yang, X., Tang, J., Feng, X., Zhang, S.L. and Yan, H. (2019) Organocatalytic Asymmetric One-Step Desymmetrizing Dearomatization Reaction of Indoles: Development and Bioactivity Evaluation. Angewandte Chemie International Edition, 58, 216-220. https://doi.org/10.1002/anie.201811437 |
[14] |
Guang, J.M., et al. (2023) Catalytic Asymmetric Dearomatization of Phenols via Divergent Intermolecular (3 + 2) and Alkylation Reactions. Nature Communications, 14, Article No. 5189. https://doi.org/10.1038/s41467-023-40891-w |
[15] |
Chen, P.F., Zhou, B., Wu, P., Wang, B. and Ye, L.W. (2021) Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams. Angewandte Chemie International Edition, 60, 27164-27170. https://doi.org/10.1002/anie.202113464 |
[16] |
Davison, N., Quirk, J.A., Tuna, F., Collison, D., McMullin, C.L., Michaels, H., Lu, E., et al. (2023) A Room-Temperature-Stable Electride and Its Reactivity: Reductive Benzene/Pyridine Couplings and Solvent-Free Birch Reductions. Chem, 9, 576-591. https://doi.org/10.1016/j.chempr.2022.11.006 |
[17] |
Southgate, E.H., Holycross, D.R. and Sarlah, D. (2017) Total Synthesis of Lycoricidine and Narciclasine by Chemical Dearomatization of Bromobenzene. Angewandte Chemie International Edition, 56, 15049-15052. https://doi.org/10.1002/anie.201709712 |
[18] |
Ghavre, M., Froese, J., Pour, M. and Hudlicky, T. (2016) Synthesis of Amaryllidaceae Constituents and Unnatural Derivatives. Angewandte Chemie International Edition, 55, 5642-5691. https://doi.org/10.1002/anie.201508227 |
[19] |
Kornienko, A. and Evidente, A. (2008) Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners. Chemical Reviews, 108, 1982-2014. https://doi.org/10.1021/cr078198u |
[20] |
Elango, S. and Yan, T.H. (2002) A Short Synthesis of (+)-Narciclasine via a Strategy Derived from Stereocontrolled Epoxide Formation and SnCl4-Catalyzed Arene-Epoxide Coupling. The Journal of Organic Chemistry, 67, 6954-6959. https://doi.org/10.1021/jo020155k |
[21] |
Feng, S., et al. (2014) Organocatalytic Asymmetric Arylative Dearomatization of 2,3-Disubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie International Edition, 53, 1-5. https://doi.org/10.1002/anie.201408551 |
[22] |
Kuznetsov, D.M., Mukhina, O.A. and Kutateladze, A.G. (2016) Photoassisted Synthesis of Complex Molecular Architectures: Dearomatization of Benzenoid Arenes with Aza-o-xylylenes via an Unprecedented [2+4] Reaction Topology. Angewandte Chemie International Edition, 55, 6988-6991. https://doi.org/10.1002/anie.201602288 |
[23] |
Reed, J.H., Donets, P.A., Miaskiewicz, S. and Cramer, N. (2019) A 1,3,2-Diazaphospholene-Catalyzed Reductive Claisen Rearrangement. Angewandte Chemie International Edition, 58, 8893-8897. https://doi.org/10.1002/anie.201904411 |
[24] |
Maulide, N., et al. (2018) Unusual Mechanisms in Claisen Rearrangements: An Ionic Fragmentation Leading to a Meta-Selective Rearrangement. Chemical Science, 9, 4124-4131. https://doi.org/10.1039/C7SC04736C |
[25] |
Mertl, D., et al. (2005) Alkyl Aluminum Halide Promoted Intramolecular Cyclization of w-Allyl-cycloalk-2-enones: Access to Bridged Bi- and Tricyclic Compounds. Angewandte Chemie International Edition, 44, 99-10. https://doi.org/10.1002/anie.200461207 |
[26] |
Lovchik, M.A., Goeke, A. and Fráter, G. (2006) Stereoselective Synthesis of Cyclohexa-2,4-Dien-1-Ones and Cyclohex-2-en-1-ones from Phenols. Tetrahedron Asymmetry, 17, 1693-1699. https://doi.org/10.1016/j.tetasy.2006.06.017 |
[27] |
Yadav, G.D. and Lande, S.V. (2005) Claisen Rearrangement with a Novel Solid Superacid UDCaT-5: Atom Economical and Selective Conversion of Allyl-4-Methoxyphenyl Ether into 2-allyl-4-methoxyphenol. Microporous and Mesoporous Materials, 83, 357-364. https://doi.org/10.1016/j.micromeso.2005.05.002 |
[28] |
Chou, C.-M., et al. (2019) Functionalized Allyl Aryl Ethers Synthesis from Benzoic Acids Using Dearomatization and Decarboxylative Allylation Approach. The Journal of Organic Chemistry, 84, 653-665. https://doi.org/10.1021/acs.joc.8b02487 |
[29] |
Chen, K., Kang, Q.K., Li, Y., Wu, W.Q., Zhu, H. and Shi, H. (2022) Catalytic Amination of Phenols with Amines. Journal of the American Chemical Society, 144, 1144-1151. https://doi.org/10.1021/jacs.1c12622 |
[30] |
Malarz, J., Yudina, Y.V. and Stojakowska, A. (2023) Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. International Journal of Molecular Sciences, 24, Article No. 6920. https://doi.org/10.3390/ijms24086920 |
[31] |
Qiu, Z. and Li, C.J. (2020) Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage. Chemical Reviews, 120, 10454-10515. https://doi.org/10.1021/acs.chemrev.0c00088 |
[32] |
Shi, F.Q., Li, X., Xia, Y., Zhang, L. and Yu, Z.X. (2007) DFT Study of the Mechanisms of in Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates: A Proton-Transport CatalysisStrategy in the Water-Catalyzed [1,2]-Hydrogen Shift. Journal of the American Chemical Society, 129, 15503-15512. https://doi.org/10.1021/ja071070+ |
[33] |
Blackmond, D.G., Armstrong, A., Coombe, V. and Wells, A. (2007) Water in Organocatalytic Processes: Debunking the Myths. Angewandte Chemie International Edition, 46, 3798-3800. https://doi.org/10.1002/anie.200604952 |
[34] |
Kobayashi, S., et al. (2006) Ag(I)-Catalyzed Michael Additions of b-Ketoesters to Nitroalkenes in Water: Remarkable Effect of Water as a Reaction Medium on Reaction Rates. Synlett, 9, 1410-1412. https://doi.org/10.1055/s-2006-939709 |
[35] |
Peruzzi, M.T., Lee, S.J. and Gagné, M.R. (2017) Gold(I) Catalyzed Dearomative Claisen Rearrangement of Allyl, Allenyl Methyl, and Propargyl Aryl Ethers. Organic Letters, 19, 6256-6259. https://doi.org/10.1021/acs.orglett.7b03306 |
[36] |
Obradors, C. and Echavarren, A.M. (2014) Gold-Catalyzed Rearrangements and Beyond. Accounts of Chemical Research, 47, 902-912. https://doi.org/10.1021/ar400174p |
[37] |
Sherry, B.D. and Toste, F.D. (2004) Gold(I)-Catalyzed Propargyl Claisen Rearrangement. Journal of the American Chemical Society, 126, 15978-15979. https://doi.org/10.1021/ja044602k |
[38] |
Muñoz, M.P. (2012) Transition Metal-Catalysed Intermolecular Reaction of Allenes with Oxygen Nucleophiles: A Perspective. Organic & Biomolecular Chemistry, 10, 3584-3594. https://doi.org/10.1039/c2ob07128b |
[39] |
Widenhoefer, R.A., et al. (2009) Gold(I)-Catalyzed Hydration of Allenes. Tetrahedron, 65, 1794-1798. https://doi.org/10.1016/j.tet.2008.10.113 |
[40] |
Wei, X., Liang, X., Li, Y., Liu, Q., Liu, X., Zhou, Y. and Liu, H. (2021) I2-Induced Cascade Cyclization and Dearomatization of Indoles for the Highly Efficient Synthesis of Iodinated and Vinylic Spiroindolenines. Green Chemistry, 23, 9165-9171. https://doi.org/10.1039/D1GC02713A |
[41] |
Camp, J.E., Craig, D., Funai, K. and White, A.J. (2011) Decarboxylative Claisen Rearrangement Reactions: Synthesis and Reactivity of Alkylidene-Substituted Indolines. Organic & Biomolecular Chemistry, 9, 7904-7912. https://doi.org/10.1039/c1ob06212c |
[42] |
Buechi, G. and Vogel, D.E. (1983) Preparation and Rearrangement of Trans-3-(allyloxy)acrylic Acids: A Claisen Sequence that Avoids Mercury Catalysis. The Journal of Organic Chemistry, 48, 5406-5408. https://doi.org/10.1021/jo00174a064 |
[43] |
Ogura, A., et al. (2023) Synthesis of Indoles via Sigmatropic Rearrangements and Olefin Isomerization. Advanced Synthesis & Catalysis, 365, 1-9. |
[44] |
Abe, T., Kosaka, Y., Asano, M., Harasawa, N., Mishina, A., Nagasue, M., Yamada, K., et al. (2019) Direct C4-Benzylation of Indoles via Tandem Benzyl Claisen/Cope Rearrangements. Organic Letters, 21, 826-829. https://doi.org/10.1021/acs.orglett.8b04120 |
[45] |
Li, H., Hughes, R.P. and Wu, J. (2014) Dearomative Indole (3 + 2) Cycloaddition Reactions. Journal of the American Chemical Society, 136, 6288-6296. https://doi.org/10.1021/ja412435b |
[46] |
Linton, E.C. and Kozlowski, M.C. (2008) Catalytic Enantioselective Meerwein-Eschenmoser Claisen Rearrangement: Asymmetric Synthesis of Allyl Oxindoles. Journal of the American Chemical Society, 130, 16162-16163. https://doi.org/10.1021/ja807026z |
[47] |
Booker-Milburn, K.I., Fedouloff, M., Paknoham, S.J., Strachan, J.B., Melville, J.L. and Voyle, M. (2000) A New Claisen Sequence for the Synthesis of 3-Substituted-2-oxindoles. Tetrahedron Letters, 41, 4657-4661. https://doi.org/10.1016/S0040-4039(00)00649-3 |
[48] |
Watson, M.P., Overman, L.E. and Bergman, R.G. (2007) Kinetic and Computational Analysis of the Palladium(II)-Catalyzed Asymmetric Allylic Trichloroacetimidate Rearrangement: Development of a Model for Enantioselectivity. Journal of the American Chemical Society, 129, 5031-5044. https://doi.org/10.1021/ja0676962 |
[49] |
Cao, T., Linton, E.C., Deitch, J., Berritt, S. and Kozlowski, M.C. (2012) Copper(II)- and Palladium(II)-Catalyzed Enantioselective ClaisenRearrangement of Allyloxy- and Propargyloxy-Indoles to Quaternary Oxindoles and Spirocyclic Lactones. The Journal of Organic Chemistry, 77, 11034-11055. https://doi.org/10.1021/jo302039n |
[50] |
Ogasawara, M., Ikeda, H., Nagano, T. and Hayashi, T. (2001) Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes: A Synergistic Effect of Dibenzalacetone on High Enantioselectivity. Journal of the American Chemical Society, 123, 2089-2090. https://doi.org/10.1021/ja005921o |
[51] |
Baidilov, D., Elkin, P.K., Athe, S. and Rawal, V.H. (2023) Rapid Access to 2,2-Disubstituted Indolines via DearomativeIndolic Claisen Rearrangement: Concise, Enantioselective Total Synthesis of (+)-Hinckdentine A. Journal of the American Chemical Society, 145, 14831-14838. https://doi.org/10.1021/jacs.3c03611 |
[52] |
Zhou, W., Zhou, T., Tian, M., Jiang, Y., Yang, J., Lei, S., Zhang, M., et al. (2021) Asymmetric Total Syntheses of Schizozygane Alkaloids. Journal of the American Chemical Society, 143, 19975-19982. https://doi.org/10.1021/jacs.1c10279 |
[53] |
Cao, T., Deitch, J., Linton, E.C. and Kozlowski, M.C. (2012) Asymmetric Synthesis of Allenyl Oxindoles and Spirooxindoles by a Catalytic Enantioselective Saucy-Marbet Claisen Rearrangement. Angewandte Chemie International Edition, 51, 2448-2451. https://doi.org/10.1002/anie.201107417 |
[54] |
Ikonnikova, V.A., Zhigileva, E.A., Al Mufti, A.M., Solyev, P.N., Baranov, M.S. and Mikhaylov, A.A. (2023) Merging Johnson-Claisen and Aromatic Claisen [3,3]-Sigmatropic Rearrangements: Ytterbium Triflate/2,6-Di-tert-butylpyridine Catalytic System. The Journal of Organic Chemistry, 88, 9737-9749. https://doi.org/10.1021/acs.joc.3c00368 |
[55] |
Raucher, S., Macdonald, J.E. and Lawrence, R.F. (1981) Indole Alkaloidsynthesis via Claisenrearrangement. Total Synthesis of Secodine. Journal of the American Chemical Society, 103, 2419-2421. https://doi.org/10.1021/ja00399a053 |
[56] |
Raucher, S. and Klein, P. (1986) Synthesis via Sigmatropic Rearrangements. 10. Synthesis of 2,3-Disubstituted Indoles via Claisen Ortho Ester Rearrangement. An Approach for the Synthesis of Vindorosine. The Journal of Organic Chemistry, 51, 123-130. https://doi.org/10.1021/jo00352a001 |