[1] |
邢文慧, 喻红梅, 房政钰, 龚宁波, 吕扬. 氮唑类抗真菌药物多晶型与共晶研究进展[J]. 医药导报, 2022, 41(5): 649-655. |
[2] |
曾芳芳, 刘颖. 棘白菌素类抗真菌药不良反应文献分析[J]. 国外医药: 抗生素分册, 2023, 44(2): 123-126. |
[3] |
徐贝雪, 刘泉波. 抗真菌药物临床应用及研究进展[J]. 现代医药卫生, 2022, 38(14): 2435-2440. |
[4] |
覃启剑, 房文霞. 真菌感染防控及真菌细胞壁靶标的研究进展[J]. 广西科学院学报, 2023, 39(3): 213-222. |
[5] |
郭颖强, 张玉勤, 苟世宁. 抗真菌药物临床应用机制及发展趋势[J]. 中国食用医学, 2010, 5(35): 235-236. |
[6] |
张兴. γ-AA模拟肽抗真菌活性评价及作用机制研究和其他研究[D]: [硕士学位论文]. 重庆: 西南大学, 2023. |
[7] |
柴双. 基于FDA不良事件报告系统对五种三唑类抗真菌药物的安全性评价[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2023. |
[8] |
杨光影, 赵彤, 田静涵, 翁俊, 曾小美. 酵母线粒体ATP合酶生物合成及组装机制研究进展[J]. 菌物学报, 2018, 37(11): 1424-1440. |
[9] |
Lai, Y., Zhang, Y., Zhou, S., Xu, J., Du, Z., Feng, Z., et al. (2023) Structure of The human ATP Synthase. Molecular Cell, 83, 2137-2147.E4. https://doi.org/10.1016/j.molcel.2023.04.029 |
[10] |
Artika, I.M. (2019) Current Understanding of Structure, Function and Biogenesis of Yeast Mitochondrial ATP Synthase. Journal of Bioenergetics and Biomembranes, 51, 315-328. https://doi.org/10.1007/s10863-019-09809-4 |
[11] |
吴昊天. ATP1基因在白念珠菌致病力中的作用及其机制的初步研究[D]: [硕士学位论文]. 广州: 暨南大学, 2018. |
[12] |
Li, S., Liu, Y., Weng, L., Zhao, Y., et al. (2023) The FF-ATP Synthase α Subunit of Candida albicans Induces Inflammatory Responses by Controlling Amino Acid Catabolism. Virulence, 14, Article ID: 2190645. https://doi.org/10.1080/21505594.2023.2190645 |
[13] |
Abdulghani, M., Telang, S., Desai, M., Kadam, S., et al. (2023) Opaque Cell-Specific Proteome of Candida albicans ATCC 10231. Medical Mycology, 61, myad062. https://doi.org/10.1093/mmy/myad062 |
[14] |
He, P., Xiao, G., Liu, H., Zhang, L., Zhao, L., et al. (2018) Two Pivotal RNA Editing Sites in the Mitochondrial atp1mRNA Are Required for ATP Synthase to Produce Sufficient ATP for Cotton Fiber Cell Elongation. New Phytologist, 218, 167-182. https://doi.org/10.1111/nph.14999 |
[15] |
Chateigner-Boutin, A.L. and Small, I. (2011) Organellar RNA Editing. WIREs RNA, 2, 493-506. https://doi.org/10.1002/wrna.72 |
[16] |
唐川燕. 基于白念珠菌F1Fo-ATP合酶β亚基结构的小分子虚拟筛选与活性验证[D]: [硕士学位论文]. 广州: 暨南大学, 2022. |
[17] |
李水秀. 白念珠菌F1Fo-ATP合酶β亚基参与小鼠致死性感染及其机制研究[D]: [博士学位论文]. 广州: 暨南大学, 2018. |
[18] |
Li, S.X., Wu, H.T., Liu, Y.T., Jiang, Y.Y., Zhang, Y.S., Liu, W.D., et al. (2018) The F1Fo-ATP Synthase β Subunit Is Required for Candida albicans Pathogenicity Due to Its Role in Carbon Flexibility. Frontiers in Microbiology, 9, Article 1025. https://doi.org/10.3389/fmicb.2018.01025 |
[19] |
Neupane, P., Bhuju, S., Thapa, N. and Bhattarai, H.K. (2019) ATP Synthase: Structure, Function and Inhibition. Biomolecular Concepts, 10, 1-10. https://doi.org/10.1515/bmc-2019-0001 |
[20] |
李水秀, 张宏. F1Fo-ATP合酶δ亚基对白念珠菌致病以及通过调节多阶段致病因子的机制研究[C]//中国菌物学会. 中国菌物学会2018年学术年会论文汇编. 2018: 1. |
[21] |
Reinders, J., Wagner, K., Zahedi, R.P., Stojanovski, D., Eyrich, B., et al. (2007) Profiling Phosphoproteins of Yeast Mitochondria Reveals a Role of Phosphorylation in Assembly of the ATP Synthase. Molecular & Cellular Proteomics, 6, 1896-1906. https://doi.org/10.1074/mcp.M700098-MCP200 |
[22] |
Mayr, J.A., Havlícková, V., Zimmermann, F., Magler, I., Kaplanová, V., Jesina, P., et al. (2010) Mitochondrial ATP Synthase Deficiency Due to a Mutation in the ATP5E Gene for the F1 Epsilon Subunit. Human Molecular Genetics, 19, 3430-3439. https://doi.org/10.1093/hmg/ddq254 |
[23] |
Havlícková, V., Kaplanová, V., Nůsková, H., Drahota, Z. and Houstek, J. (2010) Knockdown of F1 Epsilon Subunit Decreases Mitochondrial Content of ATP Synthase and Leads to Accumulation of Subunit c. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1797, 1124-1129. https://doi.org/10.1016/j.bbabio.2009.12.009 |
[24] |
Lai-Zhang, J. and Mueller, D.M. (2000) Complementation of Deletion Mutants in the Genes Encoding the F1-ATPase by Expression of the Corresponding Bovine Subunits in Yeast S. cerevisiae. European Journal of Biochemistry, 267, 2409-2418. https://doi.org/10.1046/j.1432-1327.2000.01253.x |
[25] |
Yoshida, Y., Sato, T., Hashimoto, T., Ichikawa, N., Nakai, S., et al. (1990) Isolation of a Gene for a Regulatory 15-kDa Subunit of Mitochondrial F1F0-ATPase and Construction of Mutant Yeast Lacking the Protein. European Journal of Biochemistry, 192, 49-53. https://doi.org/10.1111/j.1432-1033.1990.tb19193.x |
[26] |
Ichikawa, N., Karaki, A., Kawabata, M., Ushida, S., Mizushima, M. and Hashimoto, T. (2001) The Region from Phenylalanine-17 to Phenylalanine-28 of a Yeast Mitochondrial ATPase Inhibitor Is Essential for Its ATPase Inhibitory Activity. The Journal of Biochemistry, 130, 687-693. https://doi.org/10.1093/oxfordjournals.jbchem.a003035 |
[27] |
Dienhart, M., Pfeiffer, K., Schagger, H. and Stuart, R.A. (2002) Formation of the Yeast F1FO-ATP Synthase Dimeric Complex Does Not Require the ATPase Inhibitor Protein, Inh1. Journal of Biological Chemistry, 277, 39289-39295. https://doi.org/10.1074/jbc.M205720200 |
[28] |
Faccenda, D. and Campanella, M. (2012) Molecular Regulation of the Mitochondrial F1F0-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF1). International Journal of Cell Biology, 2012, Article ID: 367934. https://doi.org/10.1155/2012/367934 |
[29] |
Hashimoto, T., Yoshida, Y. and Tagawa, K. (1990) Simultaneous Bindings of ATPase Inhibitor and 9K Protein to F1F0-ATPase in the Presence of 15K Protein in Yeast Mitochondria. The Journal of Biochemistry, 108, 17-20. https://doi.org/10.1093/oxfordjournals.jbchem.a123154 |
[30] |
Ichikawa, N., Ando, C. and Fumino, M. (2006) Caenorhabditis elegans MAI-1 Protein, Which Is Similar to Mitochondrial ATPase Inhibitor (IF1), Can Inhibit Yeast F0F1-ATPase but Cannot Be Transported to Yeast Mitochondria. Journal of Bioenergetics and Biomembranes, 38, 93-99. https://doi.org/10.1007/s10863-006-9009-2 |
[31] |
Vaillier, J., Arselin, G., Graves, P.V., Camougrand, N. and Velours, J. (1999) Isolation of Supernumerary Yeast ATP Synthase Subunits e and i. Characterization of Subunit i and Disruption of Its Structural Gene ATP18. Journal of Biological Chemistry, 274, 543-548. https://doi.org/10.1074/jbc.274.1.543 |
[32] |
Wagner, K., Perschil, I., Fichter, C.D. and van der Laan, M. (2010) Stepwise Assembly of Dimeric F1Fo-ATP Synthase in Mitochondria Involves the Small Fo-Subunits k and i. Molecular Biology of the Cell, 21, 1435-1643. https://doi.org/10.1091/mbc.e09-12-1023 |
[33] |
吕妍. 白念珠菌F1Fo-ATP合酶i/j亚基和k亚基在小鼠致死性感染中的作用研究[D]: [硕士学位论文]. 广州: 暨南大学, 2020. |
[34] |
范海鸣, 刘艳霞. 线粒体ATP合酶中寡霉素敏感相关蛋白的研究进展[J]. 中国药学杂志, 2008, 43(9): 641-643. |
[35] |
Everard-Gigot, V., Dunn, C.D., Dolan, B.M., Brunner, S., Jensen, R.E. and Stuart, R.A. (2005) Functional Analysis of Subunit e of the F1Fo-ATP Synthase of the Yeast Saccharomyces cerevisiae: Importance of the N-Terminal Membrane anchor Region. Eukaryotic Cell, 4, 346-355. https://doi.org/10.1128/EC.4.2.346-355.2005 |
[36] |
Wagner, K., Rehling, P., Sanjuán Szklarz, L.K., et al. (2009) Mitochondrial F1Fo-ATP Synthase: The Small Subunits e and g Associate with Monomeric Complexes to Trigger Dimerization. Journal of Molecular Biology, 392, 855-861. https://doi.org/10.1016/j.jmb.2009.07.059 |
[37] |
Hong, S. and Pedersen, P.L. (2003) Subunit E of mitochondrial ATP Synthase: A Bioinformatic Analysis Reveals a Phosphopeptide Binding Motif Supporting a Multifunctional Regulatory Role and Identifies a Related Human Brain Protein with the Same Motif. Proteins, 51, 155-161. https://doi.org/10.1002/prot.10318 |
[38] |
Lytovchenko, O., Naumenko, N., Oeljeklaus, S., Schmidt, B., von der Malsburg, K., Deckers, M., et al. (2014) The INA Complex Facilitates Assembly of the Peripheral Stalk of the Mitochondrial F1Fo-ATP Synthase. The EMBO Journal, 33, 1624-1638. https://doi.org/10.15252/embj.201488076 |