[1] |
An, C. and Mou, Z. (2011) Salicylic Acid and Its Function in Plant Immunity. Journal of Integrative Plant Biology, 53, 412-428. https://doi.org/10.1111/j.1744-7909.2011.01043.x |
[2] |
Gong, Q., Wang, Y., He, L., et al. (2023) Molecular Basis of Methyl-Salicylate-Mediated Plant Airborne Defence. Nature, 622, 139-148. https://doi.org/10.1038/s41586-023-06533-3 |
[3] |
Desborough, M.J.R. and Keeling, D.M. (2017) The Aspirin Story—from Willow to Wonder Drug. British Journal of Haematology, 177, 674-683. https://doi.org/10.1111/bjh.14520 |
[4] |
Montinari, M.R., Minelli, S. and De Caterina, R. (2019) The First 3500 Years of Aspirin History from Its Roots—A Concise Summary. Vascular Pharmacology, 113, 1-8. https://doi.org/10.1016/j.vph.2018.10.008 |
[5] |
Patrignani, P. and Patrono, C. (2016) Aspirin and Cancer. Journal of the American College of Cardiology, 68, 967-976. https://doi.org/10.1016/j.jacc.2016.05.083 |
[6] |
Ding, P. and Ding, Y (2020) Stories of Salicylic Acid: A Plant Defense Hormone. Trends in Plant Science, 25, 549-565. https://doi.org/10.1016/j.tplants.2020.01.004 |
[7] |
Wildermuth, M.C., Dewdney, J., Wu, G., et al. (2001) Isochorismate Synthase Is Required to Synthesize Salicylic Acid for Plant Defence. Nature, 414, 562-565. https://doi.org/10.1038/35107108 |
[8] |
Rekhter, D., Lüdke, D., Ding, Y., et al. (2019) Isochorismate-Derived Biosynthesis of the Plant Stress Hormone Salicylic Acid. Science, 365, 498-502. https://doi.org/10.1126/science.aaw1720 |
[9] |
Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., et al. (2011) Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, 9, e0156. https://doi.org/10.1199/tab.0156 |
[10] |
White, R.F. (1979) Acetylsalicylic Acid (Aspirin) Induces Resistance to Tobacco Mosaic Virus in Tobacco. Virology, 99, 410-412. https://doi.org/10.1016/0042-6822(79)90019-9 |
[11] |
Kumar, S., Zavaliev, R., Wu, Q., et al. (2022) Structural Basis of NPR1 in Activating Plant Immunity. Nature, 605, 561-566. https://doi.org/10.1038/s41586-022-04699-w |
[12] |
Klessig, D.F., Choi, H.W. and Dempsey, D.A. (2018) Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions, 31, 871-888. https://doi.org/10.1094/MPMI-03-18-0067-CR |
[13] |
Grobelak, A. and Hiller, J (2017) Bacterial Siderophores Promote Plant Growth: Screening of Catechol and Hydroxamate Siderophores. International Journal of Phytoremediation, 19, 825-833. https://doi.org/10.1080/15226514.2017.1290581 |
[14] |
Mishra, A.K. and Baek, K.H. (2021) Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules, 11, Article 705. https://doi.org/10.3390/biom11050705 |
[15] |
Islam, M.N., Ali, M.S., Choi, S.J., et al. (2019) Salicylic Acid-Producing Endophytic Bacteria Increase Nicotine Accumulation and Resistance against Wildfire Disease in Tobacco Plants. Microorganisms, 8, Article 31. https://doi.org/10.3390/microorganisms8010031 |
[16] |
Gross, H. and Loper, J.E. (2009) Genomics of Secondary Metabolite Production by Pseudomonas Spp. Natural Product Reports, 26, 1408-1446. https://doi.org/10.1039/b817075b |
[17] |
Serino, L., Reimmann, C., Baur, H., et al. (1995) Structural Genes for Salicylate Biosynthesis from Chorismate in Pseudomonas Aeruginosa. Molecular and General Genetics MGG, 249, 217-228. https://doi.org/10.1007/BF00290369 |
[18] |
Ghssein, G. and Ezzeddine, Z. (2022) A Review of Pseudomonas Aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. Biology, 11, Article 1711. https://doi.org/10.3390/biology11121711 |
[19] |
Bakker, P.A.H.M., Ran, L. and Mercado-Blanco, J. (2014) Rhizobacterial Salicylate Production Provokes Headaches! Plant and Soil, 382, 1-16. https://doi.org/10.1007/s11104-014-2102-0 |
[20] |
Manos-Turvey, A., Bulloch, E.M.M., Rutledge, P.J., et al. (2010) Inhibition Studies of Mycobacterium Tuberculosis Salicylate Synthase (MbtI). ChemMedChem, 5, 1067-1079. https://doi.org/10.1002/cmdc.201000137 |
[21] |
Kaduskar, R.D., Scala, G.D., Al Jabri, Z.J.H., et al. (2017) Promysalin Is a Salicylate-Containing Antimicrobial with a Cell-Membrane-Disrupting Mechanism of Action on Gram-Positive Bacteria. Scientific Reports, 7, Article No. 8861. https://doi.org/10.1038/s41598-017-07567-0 |
[22] |
Chubiz, L.M. and Rao, C.V. (2011) Role of the Mar-Sox-Rob Regulon in Regulating Outer Membrane Porin Expression. Journal of Bacteriology, 193, 2252-2260. https://doi.org/10.1128/JB.01382-10 |
[23] |
Cohen, S.P., Levy, S.B., Foulds, J., et al. (1993) Salicylate Induction of Antibiotic Resistance in Escherichia Coli: Activation of the Mar Operon and a Mar-Independent Pathway. Journal of Bacteriology, 175, 7856-7862. https://doi.org/10.1128/jb.175.24.7856-7862.1993 |
[24] |
Aumercier, M., Murray, D.M. and Rosner, J.L. (1990) Potentiation of Susceptibility to Aminoglycosides by Salicylate in Escherichia Coli. Antimicrobial Agents and Chemotherapy, 34, 786-791. https://doi.org/10.1128/AAC.34.5.786 |
[25] |
O’Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm Formation as Microbial Development. Annual Review of Microbiology, 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49 |
[26] |
Shirtliff, M.E., Mader, J.T. and Camper, A.K. (2002) Molecular Interactions in Biofilms. Cell Chemical Biology, 9, 859-871. https://doi.org/10.1016/S1074-5521(02)00198-9 |
[27] |
Kunin, C.M., Hua, T.H. and Bakaletz, L.O. (1995) Effect of Salicylate on Expression of Flagella by Escherichia Coli and Proteus, Providencia, and Pseudomonas Spp. Infection and Immunity, 63, 1796-1799. https://doi.org/10.1128/iai.63.5.1796-1799.1995 |
[28] |
Kang, G., Balasubramanian, K.A., Koshi, A.R., et al. (1998) Salicylate Inhibits Fimbriae Mediated HEp-2 Cell Adherence of and Haemagglutination by Enteroaggregative Escherichia Coli. FEMS Microbiology Letters, 166, 257-265. https://doi.org/10.1111/j.1574-6968.1998.tb13899.x |
[29] |
Vila, J. and Soto, S.M. (2012) Salicylate Increases the Expression of MarA and Reduces in Vitro Biofilm Formation in Uropathogenic Escherichia Coli by Decreasing Type 1 Fimbriae Expression. Virulence, 3, 280-285. https://doi.org/10.4161/viru.19205 |
[30] |
Cattò, C., Grazioso, G., Dell’Orto, S., et al. (2017) The Response of Escherichia Coli Biofilm to Salicylic Acid. Biofouling, 33, 235-251. https://doi.org/10.1080/08927014.2017.1286649 |
[31] |
Uhlich, G.A., Koppenhöfer, H.S., Gunther, N.W., et al. Control of Escherichia coli Serotype O157:H7 Motility and Biofilm Formation by Salicylate and Decanoate: MarA/SoxS/Rob and PchE Interactions. Applied and Environmental Microbiology, 88, e01891-21. https://doi.org/10.1128/AEM.01891-21 |
[32] |
Zimmermann, P. and Curtis, N. (2017) Antimicrobial Effects of Antipyretics. Antimicrobial Agents and Chemotherapy, 61, e02268-16. https://doi.org/10.1128/AAC.02268-16 |
[33] |
Wang, W.H., Wong, W.M., Dailidiene, D., et al. (2003) Aspirin Inhibits the Growth of Helicobacter Pylori and Enhances Its Susceptibility to Antimicrobial Agents. Gut, 52, 490-495. https://doi.org/10.1136/gut.52.4.490 |
[34] |
Zhang, X.P., Wang, W.H., Tian, Y., et al. (2009) Aspirin Increases Susceptibility of Helicobacter Pylori to Metronidazole by Augmenting Endocellular Concentrations of Antimicrobials. World Journal of Gastroenterology, 15, 919-926. https://doi.org/10.3748/wjg.15.919 |
[35] |
Bazyleu, A. and Kumar, A. (2014) Incubation Temperature, Osmolarity, and Salicylate Affect the Expression of Resistance-Nodulation-Division Efflux Pumps and Outer Membrane Porins in Acinetobacter BaumanniiATCC19606T. FEMS Microbiology Letters, 357, 136-143. https://doi.org/10.1111/1574-6968.12530 |
[36] |
Sumita, Y. and Fukasawa, M. (1993) Transient Carbapenem Resistance Induced by Salicylate in Pseudomonas Aeruginosa Associated with Suppression of Outer Membrane Protein D2 Synthesis. Antimicrobial Agents and Chemotherapy, 37, 2743-2746. https://doi.org/10.1128/AAC.37.12.2743 |
[37] |
Burns, J.L. and Clark, D.K. (1992) Salicylate-Inducible Antibiotic Resistance in Pseudomonas Cepacia Associated with Absence of a Pore-Forming Outer Membrane Protein. Antimicrobial Agents and Chemotherapy, 36, 2280-2285. https://doi.org/10.1128/AAC.36.10.2280 |
[38] |
Domenico, P., Hopkins, T. and Cunha, B.A. (1990) The Effect of Sodium Salicylate on Antibiotic Susceptibility and Synergy in Klebsiella Pneumoniae. Journal of Antimicrobial Chemotherapy, 26, 343-351. https://doi.org/10.1093/jac/26.3.343 |
[39] |
Randall, L.P. and Woodward, M.J. (2001) Multiple Antibiotic Resistance (Mar) Locus in Salmonella Enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 67, 1190-1197. https://doi.org/10.1128/AEM.67.3.1190-1197.2001 |
[40] |
Puig, M., Palomar, J., Lorén, J.G., et al. (1995) Modification by Analgesics of the Susceptibility to Antibiotics in Serratia Marcescens. New Microbiologica, 18, 385-390. |
[41] |
Shen, Z., Pu, X.Y. and Zhang, Q. (2011) Salicylate Functions as an Efflux Pump Inducer and Promotes the Emergence of Fluoroquinolone-Resistant Campylobacter Jejuni Mutants. Applied and Environmental Microbiology, 77, 7128- 7133. https://doi.org/10.1128/AEM.00763-11 |
[42] |
Hannula, M. and Hänninen, M.L. (2008) Effect of Putative Efflux Pump Inhibitors and Inducers on the Antimicrobial Susceptibility of Campylobacter Jejuni and Campylobacter Coli. Journal of Medical Microbiology, 57, 851-855. https://doi.org/10.1099/jmm.0.47823-0 |
[43] |
Randall, L.P., Ridley, A.M., Cooles, S.W., et al. (2003) Prevalence of Multiple Antibiotic Resistance in 443 Campylobacter Spp. Isolated from Humans and Animals. Journal of Antimicrobial Chemotherapy, 52, 507-510. https://doi.org/10.1093/jac/dkg379 |
[44] |
Song, K., Chen, B., Cui, Y., et al. (2022) The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic PH in the Phytopathogen Xanthomonas Campestris. mBio, 13, e03644-21. https://doi.org/10.1128/mbio.03644-21 |
[45] |
Liu, B., Zheng, D., Zhou, S., et al. (2021) VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Research, 50, D912-D917. https://doi.org/10.1093/nar/gkab1107 |
[46] |
Fuqua, W.C., Winans, S.C. and Greenberg, E.P. (1994) Quorum Sensing in Bacteria: The LuxR-LuxI Family of Cell Density-Responsive Transcriptional Regulators. Journal of Bacteriology, 176, 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994 |
[47] |
Zhou, L., Zhang, L.H., Cámara, M., et al. (2017) The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover. Trends in Microbiology, 25, 293-303. https://doi.org/10.1016/j.tim.2016.11.013 |
[48] |
Papenfort, K. and Bassler, B. (2016) Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. Nature Reviews Microbiology, 14, 576-588. https://doi.org/10.1038/nrmicro.2016.89 |
[49] |
Ahmed, S.A.K.S., Rudden, M., Smyth, T.J., et al. (2019) Natural Quorum Sensing Inhibitors Effectively Downregulate Gene Expression of Pseudomonas Aeruginosa Virulence Factors. Applied Microbiology and Biotechnology, 103, 3521-3535. https://doi.org/10.1007/s00253-019-09618-0 |
[50] |
Gerner, E., Almqvist, S., Thomsen, P., et al. (2021) Sodium Salicylate Influences the Pseudomonas Aeruginosa Biofilm Structure and Susceptibility Towards Silver. International Journal of Molecular Sciences, 22, Article 1060. https://doi.org/10.3390/ijms22031060 |
[51] |
Da, M.L., Heroux, A.K. and Pakzad, Z. (2010) Salicylic Acid Attenuates Biofilm Formation But Not Swarming InPseudomonas Aeruginosa. Journal of Experimental Microbiology and Immunology, 14, 69-73. |
[52] |
Dotto, C., Lombarte Serrat, A., Ledesma, M., et al. (2021) Salicylic Acid Stabilizes Staphylococcus Aureus Biofilm by Impairing the Agr Quorum-Sensing System. Scientific Reports, 11, Article No. 2953. https://doi.org/10.1038/s41598-021-82308-y |
[53] |
Dotto, C., Lombarte Serrat, A., Cattelan, N., et al. (2017) The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus Aureus Biofilm Formation in a PIA-Dependent Manner. Frontiers in Microbiology, 8, Article 4. https://doi.org/10.3389/fmicb.2017.00004 |
[54] |
Kupferwasser, L.I., Yeaman, M.R., Nast, C.C., et al. (2003) Salicylic Acid Attenuates Virulence in Endovascular Infections by Targeting Global Regulatory Pathways in Staphylococcus Aureus. Journal of Clinical Investigation, 112, 222-233. https://doi.org/10.1172/JCI200316876 |
[55] |
Farber, B.F. and Wolff, A.G. (1992) The Use of Nonsteroidal Antiinflammatory Drugs to Prevent Adherence of Staphylococcus Epidermidis to Medical Polymers. The Journal of Infectious Diseases, 166, 861-865. https://doi.org/10.1093/infdis/166.4.861 |
[56] |
Muller, E., Al-Attar, J., Wolff, A.G., et al. (1998) Mechanism of Salicylate-Mediated Inhibition of Biofilm in Staphylococcus Epidermidis. The Journal of Infectious Diseases, 177, 501-503. https://doi.org/10.1086/517386 |
[57] |
Lemos, M., Borges, A., Teodósio, J., et al. (2014) The Effects of Ferulic and Salicylic Acids on Bacillus Cereus and Pseudomonas Fluorescens Single- and Dual-Species Biofilms. International Biodeterioration & Biodegradation, 86, 42-51. https://doi.org/10.1016/j.ibiod.2013.06.011 |
[58] |
Smith-Becker, J., Marois, E., Huguet, E.J., et al. (1998) Accumulation of Salicylic Acid and 4-Hydroxybenzoic Acid in Phloem Fluids of Cucumber During Systemic Acquired Resistance Is Preceded by a Transient Increase in Phenylalanine Ammonia-Lyase Activity in Petioles and Stems. Plant Physiology, 116, 231-238. https://doi.org/10.1104/pp.116.1.231 |
[59] |
Yalpani, N., Leon, J., Lawton, M.A., et al. (1993) Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiology, 103, 315-321. https://doi.org/10.1104/pp.103.2.315 |
[60] |
Bai, K., Xu, X., Wang, X., et al. (2023) Transcriptional Profiling of Xanthomonas Campestris pv. Campestris in Viable But Nonculturable State. BMC Genomics, 24, Article No. 105. https://doi.org/10.1186/s12864-023-09200-z |
[61] |
He, W., Luo, W., Zhou, J., et al. (2023) Pectobacterium carotovorum Subsp. Brasiliense Causing Soft Rot in Eggplant in Xinjiang, China. Microorganisms, 11, Article 2662. https://doi.org/10.3390/microorganisms11112662 |
[62] |
Joshi, J.R., Burdman, S., Lipsky, A., et al. (2015) Plant Phenolic Acids Affect the Virulence of Pectobacterium Aroidearum and P. Carotovorum ssp. brasiliense via Quorum Sensing Regulation. Molecular Plant Pathology, 17, 487-500. https://doi.org/10.1111/mpp.12295 |
[63] |
Joshi, J.R., Khazanov, N., Khadka, N., et al. (2020) Direct Binding of Salicylic Acid to Pectobacterium N-Acyl- Homoserine Lactone Synthase. ACS Chemical Biology, 15, 1883-1891. https://doi.org/10.1021/acschembio.0c00185 |
[64] |
Hu, M., Li, J., Chen, R., et al. (2018) Dickeya Zeae Strains Isolated from Rice, Banana and Clivia Rot Plants Show Great Virulence Differentials. BMC Microbiology, 18, Article No. 136. https://doi.org/10.1186/s12866-018-1300-y |
[65] |
Hu, A., Hu, M., Chen, S., et al. (2022) Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Frontiers in Microbiology, 13, Article 839025. https://doi.org/10.3389/fmicb.2022.839025 |
[66] |
Bourras, S., Rouxel, T. and Meyer, M (2015) Agrobacterium Tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms. Phytopathology, 105, 1288-1301. https://doi.org/10.1094/PHYTO-12-14-0380-RVW |
[67] |
Yuan, Z.C., Edlind, M.P., Liu, P., et al. (2007) The Plant Signal Salicylic Acid Shuts Down Expression of the Vir Regulon and Activates Quormone-Quenching Genes in Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 104, 11790-11795. https://doi.org/10.1073/pnas.0704866104 |
[68] |
Wang, C., Ye, F., Chang, C., et al. (2019) Agrobacteria Reprogram Virulence Gene Expression by Controlled Release of Host-Conjugated Signals. Proceedings of the National Academy of Sciences of the United States of America, 116, 22331-22340. https://doi.org/10.1073/pnas.1903695116 |
[69] |
(1983) New Facts about Fungi in Food and Feet. The Lancet, 322, 1124-1125. https://doi.org/10.1016/S0140-6736(83)90634-7 |
[70] |
Ponde, N.O., Lortal, L., Ramage, G., et al. (2021) Candida albicans Biofilms and Polymicrobial Interactions. Critical Reviews in Microbiology, 47, 91-111. https://doi.org/10.1080/1040841X.2020.1843400 |
[71] |
Alem, M.A.S. and Douglas, .LJ. (2004) Effects of Aspirin and Other Nonsteroidal Anti-Inflammatory Drugs on Biofilms and Planktonic Cells of Candida Albicans. Antimicrobial Agents and Chemotherapy, 48, 41-47. https://doi.org/10.1128/AAC.48.1.41-47.2004 |
[72] |
Carvalho, A.P., Gursky, L.C., Rosa, R.T., et al. (2010) Non-Steroidal Anti-Inflammatory Drugs May Modulate the Protease Activity of Candida albicans. Microbial Pathogenesis, 49, 315-322. https://doi.org/10.1016/j.micpath.2010.07.007 |
[73] |
Wang, K., Ngea, G.L.N., Godana, E.A., et al. (2023) Recent Advances in Penicillium expansum Infection Mechanisms and Current Methods in Controlling P. expansum in Postharvest Apples. Critical Reviews in Food Science and Nutrition, 63, 2598-2611. https://doi.org/10.1080/10408398.2021.1978384 |
[74] |
Da Rocha Neto, A.C., Maraschin, M. and Di Piero, R.M. (2015) Antifungal Activity of Salicylic Acid against Penicillium expansum and Its Possible Mechanisms of Action. International Journal of Food Microbiology, 215, 64-70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018 |
[75] |
Dean, R., Van, Kan J.A.L., Pretorius, Z.A., et al. (2012) The Top 10 Fungal Pathogens in Molecular Plant Pathology. Molecular Plant Pathology, 13, 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x |
[76] |
Wu, H.S., Raza, W., Fan, J.Q., et al. (2008) Antibiotic Effect of Exogenously Applied Salicylic Acid on in Vitro Soilborne Pathogen, Fusarium oxysporum f.sp.niveum. Chemosphere, 74, 45-50. https://doi.org/10.1016/j.chemosphere.2008.09.027 |
[77] |
Li, L., Zhu, T., Song, Y., et al. (2021) Salicylic Acid Fights against Fusarium Wilt by Inhibiting Target of Rapamycin Signaling Pathway in Fusarium oxysporum. Journal of Advanced Research, 39, 1-13. https://doi.org/10.1016/j.jare.2021.10.014 |
[78] |
Amborabé, B.E., Fleurat-Lessard, P., Chollet, J.F., et al. (2002) Antifungal Effects of Salicylic Acid and Other Benzoic Acid Derivatives towards Eutypa lata: Structure-Activity Relationship. Plant Physiology and Biochemistry, 40, 1051-1060. https://doi.org/10.1016/S0981-9428(02)01470-5 |
[79] |
Speir, E., Yu, Z.X., Ferrans, V.J., et al. (1998) Aspirin Attenuates Cytomegalovirus Infectivity and Gene Expression Mediated by Cyclooxygenase-2 in Coronary Artery Smooth Muscle Cells. Circulation Research, 83, 210-216. https://doi.org/10.1161/01.RES.83.2.210 |
[80] |
Liao, C.L., Lin, Y.L., Wu, B.C., et al. (2001) Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor κ B Activation. Journal of Virology, 75, 7828-7839. https://doi.org/10.1128/JVI.75.17.7828-7839.2001 |
[81] |
Mazur, I., Wurzer, W.J., Ehrhardt, C., et al. (2007) Acetylsalicylic Acid (ASA) Blocks Influenza Virus Propagation via Its NF-κB-Inhibiting Activity. Cellular Microbiology, 9, 1683-1694. https://doi.org/10.1111/j.1462-5822.2007.00902.x |
[82] |
Trujillo-Murillo, K., Rincón-Sánchez, A.R., Martínez-Rodríguez, H., et al. (2008) Acetylsalicylic Acid Inhibits Hepatitis C Virus RNA and Protein Expression through Cyclooxygenase 2 Signaling Pathways. Hepatology, 47, 1462-1472. https://doi.org/10.1002/hep.22215 |
[83] |
Yin, P. and Zhang, L. (2016) Aspirin Inhibits Hepatitis C Virus Entry by Downregulating Claudin-1. Journal of Viral Hepatitis, 23, 62-64. https://doi.org/10.1111/jvh.12446 |
[84] |
Rivas-Estilla, A.M., Bryan-Marrugo, O.L., Trujillo-Murillo, K., et al. (2012) Cu/Zn Superoxide Dismutase (SOD1) Induction Is Implicated in the Antioxidative and Antiviral Activity of Acetylsalicylic Acid in HCV-Expressing Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 302, G1264-G1273. https://doi.org/10.1152/ajpgi.00237.2011 |
[85] |
Ríos-Ibarra, C.P., Lozano-Sepulveda, S., Muñoz-Espinosa, L., et al. (2014) Downregulation of Inducible Nitric Oxide Synthase (INOS) Expression Is Implicated in the Antiviral Activity of Acetylsalicylic Acid in HCV-Expressing Cells. Archives of Virology, 159, 3321-3328. https://doi.org/10.1007/s00705-014-2201-5 |