具有正面积边界的相对紧Siegel盘
Relatively Compact Siegel Diskswith Boundaries of Positive Area
DOI: 10.12677/PM.2024.142077, PDF, 下载: 155  浏览: 275 
作者: 孙丹隽, 曲宏宇:北京邮电大学理学院,北京
关键词: Siegel盘正面积边界全纯芽Siegel Disk Boundary of Positive Area Holomorphic Germ
摘要: Perez-Marco用管状黎曼曲面构造了具有C边界的相对紧Siegel盘。Cheritat改进了此技术, 并且构造了具有伪圆边界的相对紧Siegel盘。本文基于此技术构造了具有正面积边界相对 紧Siegel盘的全纯映射。给出的例子定义域为复平面的子集。
Abstract: Perez-Marco used tube-log Riemann surfaces to construct relatively compact Siegel disks with C boundaries. Cheritat developed the technique and constructed rela- tively compact Siegel disks with pseudo-cirle boundaries. In this paper, based on the technique, we construct holomorphic maps with relatively compact Siegel disks whose boundaries have positive area. The examples are defined on a subset of ℂ.
文章引用:孙丹隽, 曲宏宇. 具有正面积边界的相对紧Siegel盘[J]. 理论数学, 2024, 14(2): 799-806. https://doi.org/10.12677/PM.2024.142077

参考文献

[1] Brjuno, A.D. (1965) On Convergence of Transforms of Differential Equations to the Normal Form. Doklady Akademii Nauk SSSR, 165, 987-989.
[2] Brjuno, A.D., Eskin, G.I., Genov, G.K., et al. (1971) Transactions of the Moscow Mathematical Society. Vol. 25, American Mathematical Society, Providence, 131-288.
[3] Cheraghi, D. (2019) Typical Orbits of Quadratic Polynomials with a Neutral Fixed Point: Non-Brjuno Type. Annales Scientifiques de l'Ens, 52, 59-138.
https://doi.org/10.24033/asens.2384
[4] Siegel, C.L. (1942) Iteration of Analytic Functions. Annals of Mathematics, 43, 607-612.
https://doi.org/10.2307/1968952
[5] Yang, F. (2023) Siegel Disks and Related Topics.
http://maths.nju.edu.cn/yangfei/materials/Siegel-disk-Sanya.pdf
[6] Cremer, H. (1928) Zum Zentrumproblem. Mathematische Annalen, 98, 151-163.
https://doi.org/10.1007/BF01451586
[7] Geyer, L. (2019) Linearizability of Saturated Polynomials. Indiana University Mathematics Journal, 68, 1551-1578.
https://doi.org/10.1512/iumj.2019.68.6160
[8] Yoccoz, J.-C. (1988) Linearisation des germes de diffeomorphismes holomorphes de (C, 0). Comptes Rendus de l'Academie des Sciences, 306, 55-58.
[9] Perez-Marco, R. (1997) Siegel Disks with Smooth Boundaries. Preprint.
[10] Avila, A., Buff, X. and Cheritat, A. (2004) Siegel Disks with Smooth Boundaries. Acta Math- ematica, 193, 1-30.
https://doi.org/10.1007/BF02392549
[11] Buff, X. and Cheritat, A. (2007) How Regular Can the Boundary of a Quadratic Siegel Disk Be? Proceedings of the American Mathematical Society, 135, 1073-1080.
https://doi.org/10.1090/S0002-9939-06-08578-9
[12] Cheritat, A. (2011) Relatively Compact Siegel Disks with Non-Locally Connected Boundaries. Mathematische Annalen, 349, 529-542.
https://doi.org/10.1007/s00208-010-0527-1
[13] Biswas, K. (2016) Positive Area and Inaccessible Fixed Points for Hedgehogs. Ergodic Theory and Dynamical Systems, 36, 1839-1850.
https://doi.org/10.1017/etds.2014.143
[14] Fu, Y. and Yang, F. (2020) Area and Hausdorff Dimension of Sierpinski Carpet Julia Sets. Mathematische Zeitschrift, 294, 1441-1456.
https://doi.org/10.1007/s00209-019-02319-4
[15] Cheraghi, D., DeZotti, A. and Yang, F. (2020) Dimension Paradox of Irrationally Indifferent Attractors. Submitted.

Baidu
map