[1]
|
Brjuno, A.D. (1965) On Convergence of Transforms of Differential Equations to the Normal
Form. Doklady Akademii Nauk SSSR, 165, 987-989.
|
[2]
|
Brjuno, A.D., Eskin, G.I., Genov, G.K., et al. (1971) Transactions of the Moscow Mathematical
Society. Vol. 25, American Mathematical Society, Providence, 131-288.
|
[3]
|
Cheraghi, D. (2019) Typical Orbits of Quadratic Polynomials with a Neutral Fixed Point:
Non-Brjuno Type. Annales Scientifiques de l'Ens, 52, 59-138.
https://doi.org/10.24033/asens.2384
|
[4]
|
Siegel, C.L. (1942) Iteration of Analytic Functions. Annals of Mathematics, 43, 607-612.
https://doi.org/10.2307/1968952
|
[5]
|
Yang, F. (2023) Siegel Disks and Related Topics.
http://maths.nju.edu.cn/yangfei/materials/Siegel-disk-Sanya.pdf
|
[6]
|
Cremer, H. (1928) Zum Zentrumproblem. Mathematische Annalen, 98, 151-163.
https://doi.org/10.1007/BF01451586
|
[7]
|
Geyer, L. (2019) Linearizability of Saturated Polynomials. Indiana University Mathematics
Journal, 68, 1551-1578. https://doi.org/10.1512/iumj.2019.68.6160
|
[8]
|
Yoccoz, J.-C. (1988) Linearisation des germes de diffeomorphismes holomorphes de (C, 0).
Comptes Rendus de l'Academie des Sciences, 306, 55-58.
|
[9]
|
Perez-Marco, R. (1997) Siegel Disks with Smooth Boundaries. Preprint.
|
[10]
|
Avila, A., Buff, X. and Cheritat, A. (2004) Siegel Disks with Smooth Boundaries. Acta Math-
ematica, 193, 1-30. https://doi.org/10.1007/BF02392549
|
[11]
|
Buff, X. and Cheritat, A. (2007) How Regular Can the Boundary of a Quadratic Siegel Disk
Be? Proceedings of the American Mathematical Society, 135, 1073-1080.
https://doi.org/10.1090/S0002-9939-06-08578-9
|
[12]
|
Cheritat, A. (2011) Relatively Compact Siegel Disks with Non-Locally Connected Boundaries.
Mathematische Annalen, 349, 529-542. https://doi.org/10.1007/s00208-010-0527-1
|
[13]
|
Biswas, K. (2016) Positive Area and Inaccessible Fixed Points for Hedgehogs. Ergodic Theory
and Dynamical Systems, 36, 1839-1850. https://doi.org/10.1017/etds.2014.143
|
[14]
|
Fu, Y. and Yang, F. (2020) Area and Hausdorff Dimension of Sierpinski Carpet Julia Sets.
Mathematische Zeitschrift, 294, 1441-1456. https://doi.org/10.1007/s00209-019-02319-4
|
[15]
|
Cheraghi, D., DeZotti, A. and Yang, F. (2020) Dimension Paradox of Irrationally Indifferent
Attractors. Submitted.
|