[1] |
Lieb, E. and Loss, M. (2001) Analysis: Vol. 14. 2nd Edition, American Mathematical Society, Providence, RI. |
[2] |
Patlak, C.S. (1953) Random Walk with Persistence and External Bias. The Bulletin of Math-ematical Biophysics, 15, 311-338. https://doi.org/10.1007/BF02476407 |
[3] |
Keller, E.F. and Segel, L.A. (1970) Initiation of Slime Mold Aggregation Viewed as an Instability. Journal of Theoretical Biology, 26, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5 |
[4] |
Bellomo, N., Bellouquid, A., Tao, Y., et al. (2015) Toward a Mathematical Theory of Keller- Segel Models of Pattern Formation in Biological Tissues. Mathematical Models and Methods in Applied Sciences, 25, 1663-1763. https://doi.org/10.1142/S021820251550044X |
[5] |
Biler, P. (2020) Singularities of Solutions to Chemotaxis Systems. De Gruyter, Berlin. https://doi.org/10.1515/9783110599534 |
[6] |
Arumugam, G. and Tyagi, J. (2021) Keller-Segel Chemotaxis Models: A Review. Acta Appli- candae Mathematicae, 171, Article No. 6. https://doi.org/10.1007/s10440-020-00374-2 |
[7] |
Horstmann, D. (2003) From 1970 Until Present: The Keller-Segel Model in Chemotaxis and Its Consequences. I. Jahresbericht der Deutschen Mathematiker-Vereinigung, 105, 103-165. |
[8] |
Jager, W. and Luckhaus, S. (1992) On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis. Transactions of the American Mathematical Society, 329, 819-824. https://doi.org/10.1090/S0002-9947-1992-1046835-6 |
[9] |
Nagai, T. (1995) Blow-Up of Radially Symmetric Solutions to a Chemotaxis System. Advances in Mathematical Sciences and Applications, 5, 581-601. |
[10] |
Dolbeault, J. and Perthame, B. (2004) Optimal Critical Mass in the Two Dimensional Keller- Segel Model in R2. Comptes Rendus Mathematique, 339, 611-616. https://doi.org/10.1016/j.crma.2004.08.011 |
[11] |
Blanchet, A., Dolbeault, J. and Perthame, B. (2006) Two-Dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions. Electronic Journal of Dif- ferential Equations, 2006, 1-33. |
[12] |
Biler, P., Karch, G., Laurencot, P., et al. (2006) The 8π-Problem for Radially Symmetric Solutions of a Chemotaxis Model in the Plane. Mathematical Methods in the Applied Sciences, 29, 1563-1583. https://doi.org/10.1002/mma.743 |
[13] |
Blanchet, A., Carrillo, J.A. and Masmoudi, N. (2008) Infinite Time Aggregation for the critical Patlak-Keller-Segel Model in R2. Communications on Pure and Applied Mathematics, 61, 1449-1481. https://doi.org/10.1002/cpa.20225 |
[14] |
Kozono, H. and Sugiyama, Y. (2008) Local Existence and Finite Time Blow-Up of Solutions in the 2-D Keller-Segel System. Journal of Evolution Equations, 8, 353-378. https://doi.org/10.1007/s00028-008-0375-6 |
[15] |
Wei, D. (2018) Global Well-Posedness and Blow-Up for the 2-D Patlak-Keller-Segel Equation. Journal of Functional Analysis, 274, 388-401. https://doi.org/10.1016/j.jfa.2017.10.019 |