带有 Yukawa 位势的 Keller-Segel 系统L1–解的全局存在性
Global Existence of L 1–Solutionsfor the Keller{Segel Systemwith Yukawa Potential
DOI:10.12677/PM.2024.142075,PDF,下载: 163浏览: 268
作者:李雅玲:福建师范大学,数学与统计学院,福建 福州
关键词:Keller-Segel系统Cauchy问题Yukawa位势全局存在性Keller{Segel SystemCauchy ProblemsYukawa PotentialGlobal Existence
摘要:本文研究了ℝ 2中带有 Yukawa 位势的抛物–椭圆型 Keller–Segel 系统 L 1– 解的全局存在性。 文章将Wei的单调性方法推广至 γ > 0 的系统,对总质量 M ≤ 8π 情况下解的全局存在性给出一个 证明。
Abstract:In this paper, we study the global existence of L 1–solutions for the parabolic{elliptic Keller{Segel system with Yukawa potential in ℝ 2. We give a proof of the global existence of solutions with total mass M ≤ 8π. The proof is based on extending the monotonicity method of Wei to γ > 0 system.
文章引用:李雅玲. 带有 Yukawa 位势的 Keller-Segel 系统L 1–解的全局存在性[J]. 理论数学, 2024, 14(2): 770-782. https://doi.org/10.12677/PM.2024.142075

参考文献

[1] Lieb, E. and Loss, M. (2001) Analysis: Vol. 14. 2nd Edition, American Mathematical Society, Providence, RI.
[2] Patlak, C.S. (1953) Random Walk with Persistence and External Bias. The Bulletin of Math-ematical Biophysics, 15, 311-338.
https://doi.org/10.1007/BF02476407
[3] Keller, E.F. and Segel, L.A. (1970) Initiation of Slime Mold Aggregation Viewed as an Instability. Journal of Theoretical Biology, 26, 399-415.
https://doi.org/10.1016/0022-5193(70)90092-5
[4] Bellomo, N., Bellouquid, A., Tao, Y., et al. (2015) Toward a Mathematical Theory of Keller- Segel Models of Pattern Formation in Biological Tissues. Mathematical Models and Methods in Applied Sciences, 25, 1663-1763.
https://doi.org/10.1142/S021820251550044X
[5] Biler, P. (2020) Singularities of Solutions to Chemotaxis Systems. De Gruyter, Berlin.
https://doi.org/10.1515/9783110599534
[6] Arumugam, G. and Tyagi, J. (2021) Keller-Segel Chemotaxis Models: A Review. Acta Appli- candae Mathematicae, 171, Article No. 6.
https://doi.org/10.1007/s10440-020-00374-2
[7] Horstmann, D. (2003) From 1970 Until Present: The Keller-Segel Model in Chemotaxis and Its Consequences. I. Jahresbericht der Deutschen Mathematiker-Vereinigung, 105, 103-165.
[8] Jager, W. and Luckhaus, S. (1992) On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis. Transactions of the American Mathematical Society, 329, 819-824.
https://doi.org/10.1090/S0002-9947-1992-1046835-6
[9] Nagai, T. (1995) Blow-Up of Radially Symmetric Solutions to a Chemotaxis System. Advances in Mathematical Sciences and Applications, 5, 581-601.
[10] Dolbeault, J. and Perthame, B. (2004) Optimal Critical Mass in the Two Dimensional Keller- Segel Model in R2. Comptes Rendus Mathematique, 339, 611-616.
https://doi.org/10.1016/j.crma.2004.08.011
[11] Blanchet, A., Dolbeault, J. and Perthame, B. (2006) Two-Dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions. Electronic Journal of Dif- ferential Equations, 2006, 1-33.
[12] Biler, P., Karch, G., Laurencot, P., et al. (2006) The 8π-Problem for Radially Symmetric Solutions of a Chemotaxis Model in the Plane. Mathematical Methods in the Applied Sciences, 29, 1563-1583.
https://doi.org/10.1002/mma.743
[13] Blanchet, A., Carrillo, J.A. and Masmoudi, N. (2008) Infinite Time Aggregation for the critical Patlak-Keller-Segel Model in R2. Communications on Pure and Applied Mathematics, 61, 1449-1481.
https://doi.org/10.1002/cpa.20225
[14] Kozono, H. and Sugiyama, Y. (2008) Local Existence and Finite Time Blow-Up of Solutions in the 2-D Keller-Segel System. Journal of Evolution Equations, 8, 353-378.
https://doi.org/10.1007/s00028-008-0375-6
[15] Wei, D. (2018) Global Well-Posedness and Blow-Up for the 2-D Patlak-Keller-Segel Equation. Journal of Functional Analysis, 274, 388-401.
https://doi.org/10.1016/j.jfa.2017.10.019

为你推荐



Baidu
map