[1] |
段海军, 王雪微, 王博韬, 王彤星, 张心如, 王子娟, 胡卫平(2017). 急性应激: 诱发范式、测量指标及效果分析. 心理科学进展, 25(10), 1780-1790. |
[2] |
罗跃嘉, 林婉君, 吴健辉, 秦绍正(2013). 应激的认知神经科学研究. 生理科学进展, 44(5), 345-353. |
[3] |
齐铭铭, 张庆林, 关丽丽, 杨娟(2011). 急性心理性应激诱发的神经内分泌反应及其影响因素. 心理科学进展, 19(9), 1347-1354. |
[4] |
Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-Adrenergic Modulation of Cognitive Flexibility during Stress. Journal of Cognitive Neuroscience, 19, 468-478. https://doi.org/10.1162/jocn.2007.19.3.468 |
[5] |
Arnsten, A. F. T. (2009). Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nature Reviews Neuroscience, 10, 410-422. https://doi.org/10.1038/nrn2648 |
[6] |
Arnsten, A. F. T. (2015). Stress Weakens Prefrontal Networks: Molecular Insults to Higher Cognition. Nature Neuroscience, 18, 1376-1385. https://doi.org/10.1038/nn.4087 |
[7] |
Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic Modulation of Cognitive Flexibility in Problem Solving. NeuroReport, 10, 2763-2767. https://doi.org/10.1097/00001756-199909090-00012 |
[8] |
Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A., & Morilak, D. A. (2008). Chronic Unpredictable Stress Induces a Cognitive Deficit and Anxiety-Like Behavior in Rats That Is Prevented by Chronic Antidepressant Drug Treatment. Neuropsychopharmacology, 33, 320-331. https://doi.org/10.1038/sj.npp.1301410 |
[9] |
Butts, K. A., Floresco, S. B., & Phillips, A. G. (2013). Acute Stress Impairs Set-Shifting but Not Reversal Learning. Behavioural Brain Research, 252, 222-229. https://doi.org/10.1016/j.bbr.2013.06.007 |
[10] |
Cragg, L., & Chevalier, N. (2012). The Processes Underlying Flexibility in Childhood. Quarterly Journal of Experimental Psychology, 65, 209-232. https://doi.org/10.1080/17470210903204618 |
[11] |
Dajani, D. R., & Uddin, L. Q. (2015). Demystifying Cognitive Flexibility: Implications for Clinical and Developmental Neuroscience. Trends in Neurosciences, 38, 571-576. https://doi.org/10.1016/j.tins.2015.07.003 |
[12] |
Dedovic, K., Renwick, R., Mahani, N. K., Engert, V., Lupien, S. J., & Pruessner, J. C. (2005). The Montreal Imaging Stress Task: Using Functional Imaging to Investigate the Effects of Perceiving and Processing Psychosocial Stress in the Human Brain. Journal of Psychiatry & Neuroscience, 30, 319-326. |
[13] |
Dierolf, A. M., Arlt, L. E., Roelofs, K., Kölsch, M., Hülsemann, M. J., Schächinger, H., & Naumann, E. (2016). Effects of Basal and Acute Cortisol on Cognitive Flexibility in an Emotional Task Switching Paradigm in Men. Hormones and Behavior, 81, 12-19. https://doi.org/10.1016/j.yhbeh.2016.02.002 |
[14] |
Eslinger, P. J., & Grattan, L. M. (1993). Frontal Lobe and Frontal-Striatal Substrates for Different Forms of Human Cognitive Flexibility. Neuropsychologia, 31, 17-28. https://doi.org/10.1016/0028-3932(93)90077-D |
[15] |
Gabrys, R. L., Howell, J. W., Cebulski, S. F., Anisman, H., & Matheson, K. (2019). Acute Stressor Effects on Cognitive Flexibility: Mediating Role of Stressor Appraisals and Cortisol. Stress, 22, 182-189. https://doi.org/10.1080/10253890.2018.1494152 |
[16] |
Goldfarb, E. V., Frobose, M. I., Cools, R., & Phelps, E. A. (2017). Stress and Cognitive Flexibility: Cortisol Increases Are Associated with Enhanced Updating but Impaired Switching. Journal of Cognitive Neuroscience, 29, 14-24. https://doi.org/10.1162/jocn_a_01029 |
[17] |
Grant, D. A., & Berg, E. (1948). A Behavioral Analysis of Degree of Reinforcement and Ease of Shifting to New Responses in a Weigl-Type Card-Sorting Problem. Journal of Experimental Psychology, 38, 404-411. https://doi.org/10.1037/h0059831 |
[18] |
Grattan, L. M., & Eslinger, P. J. (1989). Higher Cognition and Social Behavior: Changes in Cognitive Flexibility and Empathy after Cerebral Lesions. Neuropsychology, 3, 175-185. https://doi.org/10.1037/0894-4105.3.3.175 |
[19] |
Kalia, V., Vishwanath, K., Knauft, K., Vellen, B. V., Luebbe, A., & Williams, A. (2018). Acute Stress Attenuates Cognitive Flexibility in Males Only: An FNIRS Examination. Frontiers in Psychology, 9, Article 2084. https://doi.org/10.3389/fpsyg.2018.02084 |
[20] |
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology, 28, 76-81. https://doi.org/10.1159/000119004 |
[21] |
Knauft, K., Waldron, A., Mathur, M., & Kalia, V. (2021). Perceived Chronic Stress Influences the Effect of Acute Stress on Cognitive Flexibility. Scientific Reports, 11, Article No. 23629. https://doi.org/10.1038/s41598-021-03101-5 |
[22] |
Kofman, O., Meiran, N., Greenberg, E., Balas, M., & Cohen, H. (2006). Enhanced Performance on Executive Functions Associated with Examination Stress: Evidence From Task-Switching and Stroop Paradigms. Cognition and Emotion, 20, 577-595. https://doi.org/10.1080/02699930500270913 |
[23] |
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial Stress Reversibly Disrupts Prefrontal Processing and Attentional Control. Proceedings of the National Academy of Sciences of the United States of America, 106, 912-917. https://doi.org/10.1073/pnas.0807041106 |
[24] |
Liston, C., Miller, M. M., Goldwater, D. S., Radley, J. J., Rocher, A. B., Hof, P. R., Morrison, J. H., & McEwen, B. S. (2006). Stress-Induced Alterations in Prefrontal Cortical Dendritic Morphology Predict Selective Impairments in Perceptual Attentional Set-Shifting. Journal of Neuroscience, 26, 7870-7874. https://doi.org/10.1523/JNEUROSCI.1184-06.2006 |
[25] |
Lovelace, J. B., & Hunter, S. T. (2013). Charismatic, Ideological, and Pragmatic Leaders’ Influence on Subordinate Creative Performance across the Creative Process. Creativity Research Journal, 25, 59-74. https://doi.org/10.1080/10400419.2013.752228 |
[26] |
Nikiforuk, A., & Popik, P. (2011). Long-Lasting Cognitive Deficit Induced by Stress Is Alleviated by Acute Administration of Antidepressants. Psychoneuroendocrinology, 36, 28-39. https://doi.org/10.1016/j.psyneuen.2010.06.001 |
[27] |
Nikiforuk, A., & Popik, P. (2014). Ketamine Prevents Stress-Induced Cognitive Inflexibility in Rats. Psychoneuroendocrinology, 40, 119-122. https://doi.org/10.1016/j.psyneuen.2013.11.009 |
[28] |
Ohly, S., & Fritz, C. (2009). Work Characteristics, Challenge Appraisal, Creativity, and Proactive Behavior: A Multi-Level Study. Journal of Organizational Behavior, 31, 543-565. https://doi.org/10.1002/job.633 |
[29] |
Orem, D. M., Petrac, D. C., & Bedwell, J. S. (2008). Chronic Self-Perceived Stress and Set-Shifting Performance in Undergraduate Students. Stress, 11, 73-78. https://doi.org/10.1080/10253890701535103 |
[30] |
Pang, E. W., Sedge, P., Grodecki, R., Robertson, A., MacDonald, M. J., Jetly, R., Shek, P. N., & Taylor, M. J. (2014). Colour or Shape: Examination of Neural Processes Underlying Mental Flexibility in Posttraumatic Stress Disorder. Translational Psychiatry, 4, e421. https://doi.org/10.1038/tp.2014.63 |
[31] |
Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly Focused under Stress: Acute Psychosocial Stress Increases Shielding of Action Goals at the Expense of Reduced Cognitive Flexibility with Increasing Time Lag to the Stressor. Journal of Cognitive Neuroscience, 23, 3218-3227. https://doi.org/10.1162/jocn_a_00024 |
[32] |
Plessow, F., Kiesel, A., & Kirschbaum, C. (2012). The Stressed Prefrontal Cortex and Goal-Directed Behaviour: Acute Psychosocial Stress Impairs the Flexible Implementation of Task Goals. Experimental Brain Research, 216, 397-408. https://doi.org/10.1007/s00221-011-2943-1 |
[33] |
Quervain, D. J., Roozendaal, B., & McGaugh, J. L. (1998). Stress and Glucocorticoids Impair Retrieval of Long-Term Spatial Memory. Nature, 394, 787-790. https://doi.org/10.1038/29542 |
[34] |
Schwabe, L., Haddad, L., & Schachinger, H. (2008). HPA Axis Activation by a Socially Evaluated Cold-Pressor Test. Psychoneuroendocrinology, 33, 890-895. https://doi.org/10.1016/j.psyneuen.2008.03.001 |
[35] |
Shields, G. S., Trainor, B. C., Lam, J. C., & Yonelinas, A. P. (2016). Acute Stress Impairs Cognitive Flexibility in Men, Not Women. Stress (Amsterdam, Netherlands), 19, 542-546. https://doi.org/10.1080/10253890.2016.1192603 |
[36] |
Steinhauser, M., Maier, M., & Hubner, R. (2007). Cognitive Control under Stress: How Stress Affects Strategies of Task-Set Reconfiguration. Psychological Science, 18, 540-544. https://doi.org/10.1111/j.1467-9280.2007.01935.x |
[37] |
Tayeb, Y., & Lavidor, M. (2016). Enhancing Switching Abilities: Improving Practice Effect by Stimulating the Dorsolateral Pre Frontal Cortex. Neuroscience, 313, 92-98. https://doi.org/10.1016/j.neuroscience.2015.11.050 |
[38] |
Vedhara, K., Hyde, J., Gilchrist, I. D., Tytherleigh, M., & Plummer, S. (2000). Acute Stress, Memory, Attention and Cortisol. Psychoneuroendocrinology, 25, 535-549. https://doi.org/10.1016/S0306-4530(00)00008-1 |
[39] |
Wang, X. W., Duan, H. J., Kan, Y. C., & Wang, B. T. (2019). The Creative Thinking Cognitive Process Influenced by Acute Stress in Humans: An Electroencephalography Study. Stress, 4, 472-481. https://doi.org/10.1080/10253890.2019.1604665 |
[40] |
Weng, T. B., Pierce, G., Darling, W., & Voss, M. W. (2015). Differential Effects of Acute Exercise on Distinct Aspects of Executive Function. Medicine & Science in Sports & Exercise, 47, 1460-1469. https://doi.org/10.1249/MSS.0000000000000542 |
[41] |
Yerkes, R. M., & Dodson, J. D. (1908). The Relation of Strength of Stimulus to Rapidity of Habit Formation. Journal of Comparative Neurology and Psychology, 18, 459-482. https://doi.org/10.1002/cne.920180503 |