[1] |
Marincola, F.M., Jaffee, E.M., Hicklin, D.J. and Ferrone, S. (2000) Escape of Human Solid Tumors from T-Cell Recog-nition: Molecular Mechanisms and Functional Significance. Advances in Immunology, 74, 181-273. https://doi.org/10.1016/S0065-2776(08)60911-6 |
[2] |
Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer Immunotherapy Comes of Age. Nature, 480, 480-489. https://doi.org/10.1038/nature10673 |
[3] |
Rosenberg, S.A. (2005) Cancer Immunotherapy Comes of Age. Nature Reviews Clinical Oncology, 2, Article No. 115. https://doi.org/10.1038/ncponc0101 |
[4] |
Ren, X., Guo, S., Guan, X., Kang, Y., Liu, J. and Yang, X. (2022) Im-munological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Frontiers in Im-munology, 13, Article ID: 790113. https://doi.org/10.3389/fimmu.2022.790113 |
[5] |
Chou, CS. and Friedman, A. (2016) Cancer-Immune Interaction. In: Chou, C.S. and Friedman, A., Eds., Introduction to Mathematical Biology, Springer, Cham, 137-146. https://doi.org/10.1007/978-3-319-29638-8_13 |
[6] |
Kareva, I., Luddy, K.A., O’Farrelly, C., Gatenby, R.A. and Brown, J.S. (2021) Predator-Prey in Tumor-Immune Interactions: A Wrong Model or Just an Incomplete One? Frontiers in Immunology, 12, Article ID: 668221. https://doi.org/10.3389/fimmu.2021.668221 |
[7] |
Schwartz, D.J., Rebeck, O.N. and Dantas, G. (2019) Complex Interactions between the Microbiome and Cancer Immune Therapy. Critical Reviews in Clinical Laboratory Sciences, 56, 567-585. https://doi.org/10.1080/10408363.2019.1660303 |
[8] |
Perales-Puchalt, A., Wojtak, K., Duperret, E.K., Yang, X., Slager, A.M., Yan, J., Muthumani, K., Montaner, L.J. and Weiner, D.B. (2019) Engineered DNA Vaccination against Follicle-Stimulating Hormone Receptor Delays Ovarian Cancer Progression in Animal Models. Molecular Therapy, 27, 314-325. https://doi.org/10.1016/j.ymthe.2018.11.014 |
[9] |
Hoteit, M., Oneissi, Z., Reda, R., et al. (2021) Cancer Immunotherapy: A Comprehensive Appraisal of Its Modes of Application. Oncology Letters, 22, 1-18. https://doi.org/10.3892/ol.2021.12916 |
[10] |
Cornel, A.M., Mimpen, I.L. and Nierkens, S. (2020) MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers, 12, Ar-ticle No. 1760. https://doi.org/10.3390/cancers12071760 |
[11] |
Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723. https://doi.org/10.1016/j.cell.2017.01.017 |
[12] |
Schuster, M., Nechansky, A. and Kircheis, R. (2006) Cancer Im-munotherapy. Biotechnology Journal: Healthcare Nutrition Technology, 1, 138-147. https://doi.org/10.1002/biot.200500044 |
[13] |
Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059 |
[14] |
Darvin, P., Toor, S.M., Sasidharan Nair, V., et al. (2018) Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Experimental & Molecular Medicine, 50, 1-11. https://doi.org/10.1038/s12276-018-0191-1 |
[15] |
李涛, 张侃, 杨文雨, 等. 免疫检查点抑制剂CTLA-4在实体肿瘤治疗中的临床应用[J]. 协和医学杂志, 2023, 14(3): 652-659. |
[16] |
Hodi, F.S., et al. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. The New England Journal of Medicine, 363, 711-723. https://doi.org/10.1056/NEJMoa1003466 |
[17] |
Robert, C., et al. (2011) Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. The New England Journal of Medicine, 364, 2517-2526. https://doi.org/10.1056/NEJMoa1104621 |
[18] |
Gibney, G.T., Weiner, L.M. and Atkins, M.B. (2016) Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy. The Lancet Oncology, 17, e542-e551. https://doi.org/10.1016/S1470-2045(16)30406-5 |
[19] |
Inokuchi, J. and Eto, M. (2019) Profile of Pembrolizumab in the Treatment of Patients with Unresectable or Metastatic Urothelial Carcinoma. Cancer Management and Research, 11, 4519-4528. https://doi.org/10.2147/CMAR.S167708 |
[20] |
Sun, X., Roudi, R., Dai, T., et al. (2019) Im-mune-Related Adverse Events Associated with Programmed Cell Death Protein-1 and Programmed Cell Death Ligand 1 Inhibitors for Non-Small Cell Lung Cancer: A Prisma Systematic Review and Meta-Analysis. BMC Cancer, 19, Article No. 558. https://doi.org/10.1186/s12885-019-5701-6 |
[21] |
Ai, L.L., Chen, J., Yan, H., He, Q.J., Luo, P.H., Xu, Z.F. and Yang, X.C. (2020) Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. Drug Design, De-velopment and Therapy, 14, 3625-3649. https://doi.org/10.2147/DDDT.S267433 |
[22] |
Balar, A.V. and Weber, J.S. (2017) PD-1 and PD-L1 Antibodies in Cancer: Current Status and Future Directions. Cancer Immunology, Immunotherapy, 66, 551-564. https://doi.org/10.1007/s00262-017-1954-6 |
[23] |
陆林敏, 张卫平. PD-1/PDL-1及CTLA-4抑制剂治疗原发性肝癌的研究进展[J]. 浙江医学, 2018, 40(13): 1516-1519. |
[24] |
Sterner, R.C. and Sterner, R.M. (2021) CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer Journal, 11, Article No. 69. https://doi.org/10.1038/s41408-021-00459-7 |
[25] |
Siddiqi, H.F., Staser, K.W. and Nambudiri, V.E. (2018) Re-search Techniques Made Simple: CAR T-Cell Therapy. Journal of Investigative Dermatology, 138, 2501-2504. https://doi.org/10.1016/j.jid.2018.09.002 |
[26] |
Hill, L.Q., Lulla, P. and Heslop, H.E. (2019) CAR-T Cell Therapy for Non-Hodgkin Lymphomas: A New Treatment Paradigm. Advances in Cell and Gene Therapy, 2, e54. https://doi.org/10.1002/acg2.54 |
[27] |
Langner, E. (2019) CAR T-Cell Therapy for Acute Lymphoblastic Leukemia. The Science Journal of the Lander College of Arts and Sciences, 12, 6. |
[28] |
Hodgson, K., Ferrer, G., Montserrat, E. and Moreno, C. (2011) Chronic Lymphocytic Leukemia and Autoimmunity: A Systematic Review. Haematologica, 96, 752-761. https://doi.org/10.3324/haematol.2010.036152 |
[29] |
Todorovic, Z., Todorovic, D., Markovic, V., et al. (2022) CAR T Cell Therapy for Chronic Lymphocytic Leukemia: Successes and Shortcomings. Current Oncology, 29, 3647-3657. https://doi.org/10.3390/curroncol29050293 |
[30] |
Kumar, S.K., Rajkumar, S.V., Dispenzieri, A., et al. (2008) Improved Survival in Multiple Myeloma and the Impact of Novel Therapies. Blood, 111, 2516-2520. https://doi.org/10.1182/blood-2007-10-116129 |
[31] |
Ghosh, A., Mailankody, S., Giralt, S.A., et al. (2018) CAR T Cell Therapy for Multiple Myeloma: Where Are We Now and Where Are We Headed? Leukemia and Lymphoma, 59, 2056-2067. https://doi.org/10.1080/10428194.2017.1393668 |
[32] |
Miliotou, A.N. and Papadopoulou, L.C. (2018) CAR T-Cell Therapy: A New Era in Cancer Immunotherapy. Current Pharmaceutical Biotechnology, 19, 5-18. https://doi.org/10.2174/1389201019666180418095526 |
[33] |
Emens, L.A. (2006) Roadmap to a Better Therapeutic Tumor Vaccine. International Reviews of Immunology, 25, 415-443. https://doi.org/10.1080/08830180600992423 |
[34] |
Bais, P., Namburi, S., Gatti, D.M., Zhang, X. and Chuang, J.H. (2017) CloudNeo: A Cloud Pipeline for Identifying Patient-Specific Tumor Neoantigens. Bioinformatics, 33, 3110-3112. https://doi.org/10.1093/bioinformatics/btx375 |
[35] |
Galluzzi, L., Vacchelli, E., Pedro, J.M.B.S., et al. (2014) Classi-fication of Current Anticancer Immunotherapies. Oncotarget, 5, 12472-12508. |
[36] |
Cheever, M.A. and Higano, C.S. (2011) Provenge (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clinical Cancer Research, 17, 3520-3526. https://doi.org/10.1158/1078-0432.CCR-10-3126 |
[37] |
Butts, C., Socinski, M.A., Mitchell, P.L., et al. (2014) Tecemotide (LBLP25) versus Placebo after Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer (START): A Randomised, Double-Blind, Phase 3 Trial. The Lancet Oncology, 15, 59-68. https://doi.org/10.1016/S1470-2045(13)70510-2 |
[38] |
di Pietro, A., Tosti, G., Ferrucci, P.F. and Testori, A. (2008) Oncophage: Step to the Future for Vaccine Therapy in Melanoma. Expert Opinion on Biological Therapy, 8, 1973-1984. https://doi.org/10.1517/14712590802517970 |
[39] |
Xia, W., Wang, J., Xu, Y., Jiang, F. and Xu, L. (2014) L-BLP25 as a Peptide Vaccine Therapy in Non-Small Cell Lung Cancer: A Review. Journal of Thoracic Disease, 6, 1513-1520. |
[40] |
Aurisicchio, L. and Ciliberto, G. (2012) Genetic Cancer Vaccines: Current Status and Perspectives. Expert Opinion on Biological Therapy, 12, 1043-1058. https://doi.org/10.1517/14712598.2012.689279 |
[41] |
Conniot, J., Scomparin, A., Peres, C., Yeini, E., Pozzi, S., Matos, A.I., Kleiner, R., Moura, L.I.F., Zupancič, E., Viana, A.S., Doron, H., Gois, P.M.P., Erez, N., Jung, S., Satchi-Fainaro, R. and Florindo, H.F. (2019) Immunization with Mannosylated Nanovaccines and Inhibition of the Im-mune-Suppressing Microenvironment Sensitizes Melanoma to Immune Checkpoint Modulators. Nature Nanotechnology, 14, 891-901. https://doi.org/10.1038/s41565-019-0512-0 |
[42] |
Zhu, G., Zhang, F., Ni, Q., Niu, G. and Chen, X. (2017) Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS Nano, 11, 2387-2392. https://doi.org/10.1021/acsnano.7b00978 |
[43] |
Goldberg, M.S. (2015) Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy. Cell, 161, 201-204. https://doi.org/10.1016/j.cell.2015.03.037 |
[44] |
Scheetz, L., Park, K.S., Li, Q., Lowenstein, P.R., Castro, M.G., Schwendeman, A. and Moon, J.J. (2019) Engineering Pa-tient-Specific Cancer Immunotherapies. Nature Biomedical Engineering, 3, 768-782. https://doi.org/10.1038/s41551-019-0436-x |
[45] |
Wang, H., Sobral, M.C., Zhang, D.K.Y., Cartwright, A.N., Li, A.W., Dellacherie, M.O., Tringides, C.M., Koshy, S.T., Wucherpfennig, K.W. and Mooney, D.J. (2020) Metabolic La-beling and Targeted Modulation of Dendritic Cells. Nature Materials, 19, 1244-1252. https://doi.org/10.1038/s41563-020-0680-1 |
[46] |
Ukidve, A., Zhao, Z., Fehnel, A., Krishnan, V., Pan, D.C., Gao, Y., Mandal, A., Muzykantov, V. and Mitragotri, S. (2020) Erythrocyte-Driven Immunization via Biomimicry of Their Natural Antigen-Presenting Function. Proceedings of the National Academy of Sciences of the United States of America, 117, 17727-17736. https://doi.org/10.1073/pnas.2002880117 |
[47] |
Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. and McDevitt, H.O. (1989) Antigen Recognition in Autoimmune Encephalomyelitis and the Potential for Peptide-Mediated Immunotherapy. Cell, 59, 247-255. https://doi.org/10.1016/0092-8674(89)90287-0 |
[48] |
Xia, Y., Wu, J., Wei, W., Du, Y., Wan, T., Ma, X., An, W., Guo, A., Miao, C., Yue, H., Li, S., Cao, X., Su, Z. and Ma, G. (2018) Exploiting the Pliability and Lateral Mobility of Pickering Emulsion for Enhanced Vaccination. Nature Materials, 17, 187-194. https://doi.org/10.1038/nmat5057 |
[49] |
Singh, M., Singh, A. and Talwar, G.P. (1991) Controlled Delivery of Diphtheria Toxoid Using Biodegradable Poly(D, L-lactide) Microcapsules. Pharmaceutical Research, 8, 958-961. https://doi.org/10.1023/A:1015832302605 |
[50] |
Cleland, J.L. (1999) Single-Administration Vaccines: Con-trolled-Release Technology to Mimic Repeated Immunizations. Trends in Biotechnology, 17, 25-29. https://doi.org/10.1016/S0167-7799(98)01272-4 |
[51] |
Siegrist, C.A. and Aspinall, R. (2009) B-Cell Responses to Vaccination at the Extremes of Age. Nature Reviews Immunology, 9, 185-194. https://doi.org/10.1038/nri2508 |
[52] |
Lin, C.Y., Lin, S.J., Yang, Y.C., Wang, D.Y., Cheng, H.F. and Yeh, M.K. (2015) Biodegradable Polymeric Microsphere-Based Vaccines and Their Applications in Infectious Diseases. Human Vaccines & Immunotherapeutics, 11, 650-656. https://doi.org/10.1080/21645515.2015.1009345 |
[53] |
McLean, H.Q., Thompson, M.G., Sundaram, M.E., Meece, J.K., McClure, D.L., Friedrich, T.C. and Belongia, E.A. (2014) Impact of Repeated Vaccination on Vaccine Effectiveness against Influenza A(H3N2) and B during 8 Seasons. Clinical Infec-tious Diseases, 59, 1375-1385. https://doi.org/10.1093/cid/ciu680 |
[54] |
Meng, Z., Zhang, Y., She, J., et al. (2021) Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Im-munotherapy. Nano Letters, 21, 1228-1237. https://doi.org/10.1021/acs.nanolett.0c03646 |
[55] |
Platsoucas, C.D., Fincke, J.E., Pappas, J., et al. (2003) Immune Responses to Human Tumors: Development of Tumor Vaccines. Anticancer Research, 23, 1969-1996. |
[56] |
Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004) Cancer Immunotherapy: Moving beyond Current Vaccines. Nature Medicine, 10, 909-915. https://doi.org/10.1038/nm1100 |
[57] |
Behl, D., Porrata, L.F., Markovic, S.N., Letendre, L., Pruthi, R.K., Hook, C.C., Tefferi, A., Elliot, M.A., Kaufmann, S.H., Mesa, R.A., et al. (2006) Absolute Lymphocyte Count Re-covery after Induction Chemotherapy Predicts Superior Survival in Acute Myelogenous Leukemia. Leukemia, 20, 29-34. https://doi.org/10.1038/sj.leu.2404032 |
[58] |
Liseth, K., Ersvaer, E., Hervig, T. and Bruserud, O. (2010) Combina-tion of Intensive Chemotherapy and Anticancer Vaccines in the Treatment of Human Malignancies: The Hematological Experience. Journal of Biomedicine and Biotechnology, 2010, Article ID: 692097. https://doi.org/10.1155/2010/692097 |
[59] |
Shurin, G.V., Tourkova, I.L., Kaneno, R. and Shurin, M.R. (2009) Chemotherapeutic Agents in Noncytotoxic Concentrations Increase Antigen Presentation by Dendritic Cells via an IL-12-Dependent Mechanism. The Journal of Immunology, 183, 137-144. https://doi.org/10.4049/jimmunol.0900734 |
[60] |
Tanaka, H., Matsushima, H., Nishibu, A., Clausen, B.E. and Ta-kashima, A. (2009) Dual Therapeutic Efficacy of Vinblastine as a Unique Chemotherapeutic Agent Capable of Inducing Dendritic Cell Maturation. Cancer Research, 69, 6987-6994. https://doi.org/10.1158/0008-5472.CAN-09-1106 |
[61] |
Herber, D.L., Nagaraj, S., Djeu, J.Y. and Gabrilovich, D.I. (2007) Mechanism and Therapeutic Reversal of Immune Suppression in Cancer. Cancer Research, 67, 5067-5069. https://doi.org/10.1158/0008-5472.CAN-07-0897 |
[62] |
Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.I., Antonia, S., Altiok, S., Celis, E. and Gabrilovich, D.I. (2010) Chemotherapy Enhances Tumor Cell Suscepti-bility to CTL-Mediated Killing during Cancer Immunotherapy in Mice. The Journal of Clinical Investigation, 120, 1111-1124. https://doi.org/10.1172/JCI40269 |
[63] |
Ramakrishnan, R. and Gabrilovich, D.I. (2011) Mechanism of Synergistic Effect of Chemotherapy and Immunotherapy of Cancer. Cancer Immunology, Immunotherapy, 60, 419-423. https://doi.org/10.1007/s00262-010-0930-1 |
[64] |
Bernstein, M.B., Krishnan, S., Hodge, J.W. and Chang, J.Y. (2016) Immunotherapy and Stereotactic Ablative Radiotherapy (ISABR): A Curative Approach? Nature Reviews Clinical Oncology, 13, 516-524. https://doi.org/10.1038/nrclinonc.2016.30 |
[65] |
Demaria, S., Golden, E.B. and Formenti, S.C. (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncology, 1, 1325-1332. https://doi.org/10.1001/jamaoncol.2015.2756 |
[66] |
Gameiro, S.R., Jammeh, M.L., Wattenberg, M.M., Tsang, K.Y., Ferrone, S. and Hodge, J.W. (2014) Radiation Induced Immunogenic Modulation of Tumor Enhances Antigen Pro-cessing and Calreticulin Exposure, Resulting in Enhanced T-Cell Killing. Oncotarget, 5, 403-416. https://doi.org/10.18632/oncotarget.1719 |
[67] |
Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. and Kroemer, G. (2017) Immunogenic Cell Death in Cancer and Infectious Disease. Nature Reviews Immunology, 17, 97-111. https://doi.org/10.1038/nri.2016.107 |
[68] |
Blank, C.U., Haanen, J.B., Ribas, A. and Schumacher, T.N. (2016) Can-cer Immunology. The “Cancer Immunogram”. Science, 352, 658-660. https://doi.org/10.1126/science.aaf2834 |
[69] |
Lugade, A.A., Sorensen, E.W., Gerber, S.A., Moran, J.P., Frelinger, J.G. and Lord, E.M. (2008) Radiation-Induced IFN-Gamma Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139. https://doi.org/10.4049/jimmunol.180.5.3132 |
[70] |
Chakraborty, M., Abrams, S.I., Camphausen, K., Liu, K., Scott, T., Coleman, C.N., et al. (2003) Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. The Journal of Immunology, 170, 6338-6347. https://doi.org/10.4049/jimmunol.170.12.6338 |
[71] |
Garnett, C.T., Palena, C., Chakraborty, M., Tsang, K.Y., Schlom, J. and Hodge, J.W. (2004) Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in En-hanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 64, 7985-7994. https://doi.org/10.1158/0008-5472.CAN-04-1525 |
[72] |
Reits, E.A., Hodge, J.W., Herberts, C.A., Groothuis, T.A., Chakraborty, M., Wansley, E.K., et al. (2006) Radiation Modulates the Peptide Repertoire, Enhances MHC Class I Ex-pression, and Induces Successful Antitumor Immunotherapy. Journal of Experimental Medicine, 203, 1259-1271. https://doi.org/10.1084/jem.20052494 |
[73] |
Dewan, M.Z., Galloway, A.E., Kawashima, N., Dewyngaert, J.K., Babb, J.S., Formenti, S.C., et al. (2009) Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect When Combined with Anti-CTLA-4 Antibody. Clinical Cancer Research, 15, 5379-5388. https://doi.org/10.1158/1078-0432.CCR-09-0265 |
[74] |
Demaria, S., Kawashima, N., Yang, A.M., Devitt, M.L., Babb, J.S., Allison, J.P., et al. (2005) Immune-Mediated Inhibition of Metastases after Treatment with Local Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clinical Cancer Research, 11, 728-734. https://doi.org/10.1158/1078-0432.728.11.2 |
[75] |
Belcaid, Z., Phallen, J.A., Zeng, J., See, A.P., Mathios, D., Gottschalk, C., et al. (2014) Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model. PLOS ONE, 9, e101764. https://doi.org/10.1371/journal.pone.0101764 |
[76] |
Wu, L., Wu, M.O., De la Maza, L., Yun, Z., Yu, J., Zhao, Y., et al. (2015) Targeting the Inhibitory Receptor CTLA-4 on T Cells Increased Abscopal Effects in Murine Mes-othelioma Model. Oncotarget, 6, 12468-12480. https://doi.org/10.18632/oncotarget.3487 |
[77] |
Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., et al. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377. https://doi.org/10.1038/nature14292 |
[78] |
Yoshimoto, Y., Suzuki, Y., Mimura, K., Ando, K., Oike, T., Sato, H., et al. (2014) Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model. PLOS ONE, 9, e92572. https://doi.org/10.1371/journal.pone.0092572 |
[79] |
Herter-Sprie, G.S., Koyama, S., Korideck, H., Hai, J., Deng, J., Li, Y.Y., et al. (2016) Synergy of Radiotherapy and PD-1 Blockade in Kras-Mutant Lung Cancer. JCI Insight, 1, e87415. https://doi.org/10.1172/jci.insight.87415 |
[80] |
Dovedi, S.J., Adlard, A.L., Lipowska-Bhalla, G., McKenna, C., Jones, S., Cheadle, E.J., et al. (2014) Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PDL1 Blockade. Cancer Research, 74, 5458-5468. https://doi.org/10.1158/0008-5472.CAN-14-1258 |
[81] |
Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treat-ment Synergistically Promote Antitumor Immunity in Mice. The Journal of Clinical Investigation, 124, 687-695. https://doi.org/10.1172/JCI67313 |
[82] |
Zeng, J., See, A.P., Phallen, J., Jackson, C.M., Belcaid, Z., Ruzevick, J., et al. (2013) Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice with Intracranial Glio-mas. International Journal of Radiation Oncology, Biology, Physics, 86, 343-349. https://doi.org/10.1016/j.ijrobp.2012.12.025 |
[83] |
Sharabi, A.B., Nirschl, C.J., Kochel, C.M., Nirschl, T.R., Franci-ca, B.J., Velarde, E., et al. (2015) Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunology Research, 3, 345-355. https://doi.org/10.1158/2326-6066.CIR-14-0196 |
[84] |
Vanneman, M. and Dranoff, G. (2012) Combining Immu-notherapy and Targeted Therapies in Cancer Treatment. Nature Reviews Cancer, 12, 237-251. https://doi.org/10.1038/nrc3237 |
[85] |
Sharma, P. and Allison, J.P. (2015) Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell, 161, 205-214. https://doi.org/10.1016/j.cell.2015.03.030 |
[86] |
Ye, F., Dewanjee, S., Li, Y., et al. (2023) Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Molecular Cancer, 22, Article No. 105. https://doi.org/10.1186/s12943-023-01805-y |
[87] |
Tan, A.C., Bagley, S.J., Wen, P.Y., et al. (2021) Systematic Re-view of Combinations of Targeted or Immunotherapy in Advanced Solid Tumors. Journal for Immunotherapy of Cancer, 9, e002459. https://doi.org/10.1136/jitc-2021-002459 |
[88] |
Corrales, L., Scilla, K., Caglevic, C., Miller, K., Oliveira, J. and Rolfo, C. (2018) Immunotherapy in Lung Cancer: A New Age in Cancer Treatment. Advances in Experimental Medicine and Biology, 995, 65-95. https://doi.org/10.1007/978-3-030-02505-2_3 |
[89] |
Martin-Liberal, J., de Olza, M.O., Hierro, C., Gros, A., Rodon, J. and Tabernero, J. (2017) The Expanding Role of Immunotherapy. Cancer Treatment Reviews, 54, 74-86. https://doi.org/10.1016/j.ctrv.2017.01.008 |
[90] |
Ventola, C.L. (2017) Cancer Immunotherapy, Part 3: Challenges and Future Trends. PT, 42, 514-521. |