[1] |
Bruce, P., Freunberger, S., Hardwick, L. and Tarascon, J. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29. https://doi.org/10.1038/nmat3191 |
[2] |
Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. https://doi.org/10.1038/nnano.2017.16 |
[3] |
Manthiram, A, Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, 1-16. https://doi.org/10.1038/natrevmats.2016.103 |
[4] |
Chayambuka, K., Mulder, G., Danilov, D. and Notten, H. (2018) Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials, 8, Article ID: 1800079. https://doi.org/10.1002/aenm.201800079 |
[5] |
Hong, X., Mei, J., Wen, L., Tong, Y., Vasileff, A., Wang, L., Liang, J., Sun, Z. and Dou, S. (2019) Nonlithium Metal-Sulfur Batteries: Steps toward a Leap. Advanced Materials, 31, Article ID: 1802822. https://doi.org/10.1002/adma.201802822 |
[6] |
Goodenough, J. and Park, K. (2013) The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 135, 1167-1176. https://doi.org/10.1021/ja3091438 |
[7] |
Li, M., Lu, J., Chen, Z. and Amine, A. (2018) 30 Years of Lithium-Ion Batteries. Advanced Materials, 30, Article ID: 1800561. https://doi.org/10.1002/adma.201800561 |
[8] |
Wang, R., Yang, J., Chen, X., Zhao, Y., Zhao, W., Qian, G., Li, S., Xiao, Y., Chen, H., Ye, Y., Zhou, G. and Pan, F. (2020) Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li-S Battery. Advanced Energy Materials, 10, Article ID: 1903550. https://doi.org/10.1002/aenm.201903550 |
[9] |
Xu, J., Yu, F., Hua, J., Tang, W., Yang, C., Hu, S., Zhao, S., Zhang, X., Xin, Z. and Niu, D. (2020) Donor Dominated Triazine-Based Microporous Polymer as a Polysulfide Immobilizer and Catalyst for High-Performance Lithium-Sulfur Batteries. Chemical Engineering Journal, 392, Article ID: 123694. https://doi.org/10.1016/j.cej.2019.123694 |
[10] |
Ji, H., Wang, Z., Sun, Y., Zhou, Y., Li, S., Zhou, J., Qian, T. and Yan, C. (2023) Weakening Li+ De-Solvation Barrier for Cryogenic Li-S Pouch Cells. Advanced Materials, 35, Article ID: 2208590. https://doi.org/10.1002/adma.202208590 |
[11] |
Pope, M. and Aksay, I. (2015) Structural Design of Cathodes for Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500124. https://doi.org/10.1002/aenm.201500124 |
[12] |
Lei, J., Liu, T., Chen, J., Zheng, M., Zhang, Q., Mao, B. and Dong, Q. (2020) Exploring and Understanding the Roles of Li2Sn and the Strategies to beyond Present Li-S Batteries. Chem, 6, 2533-2557. https://doi.org/10.1016/j.chempr.2020.06.032 |
[13] |
Song, Z., Wang, L., Jiang, W., Pei, M., Li, B., Mao, R., Liu, S., Zhang, T., Jian, X. and Hu, F. (2023) “Like Compatible Like” Strategy Designing Strong Cathode-Electrolyte Interface Quasi-Solid-State Lithium-Sulfur Batteries. Advanced Energy Materials, Article ID: 2302688. https://doi.org/10.1002/aenm.202302688 |
[14] |
He, J. and Manthiram, A. (2019) A Review on the Status and Challenges of Electrocatalysts in Lithium-Sulfur Batteries. Energy Storage Materials, 20, 55-70. https://doi.org/10.1016/j.ensm.2019.04.038 |
[15] |
Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. https://doi.org/10.1038/nnano.2017.16 |
[16] |
Gao, N., Zhang, Y., Chen, C., Li, B., Li, W., Lu, H., Yu, L., Zheng, S. and Wang, B. (2020) Low-Temperature Li-S Battery Enabled by CoFe Bimetallic Catalysts. Journal of Materials Chemistry A, 10, 8378-8389. https://doi.org/10.1039/D2TA00406B |
[17] |
Cheng, X., Zhang, R., Zhao, C. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115 |
[18] |
Liu, B., Zhang, J. and Xu, W. (2018) Advancing Lithium Metal Batteries. Joule, 2, 833-845. https://doi.org/10.1016/j.joule.2018.03.008 |
[19] |
Kang, X., He, T., Zou, R., Niu, S., Ma, Y., Zhu, F. and Ran, F. (2023) Size Effect for Inhibiting Lithium-Sulfur Batteries. Small, Article ID: 2306503. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202306503 |
[20] |
Hou, J., Yang, M., Wang, D. and Zhang, J. (2020) Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 ˚C. Advanced Energy Materials, 10, Article ID: 1904152. https://doi.org/10.1002/aenm.201904152 |
[21] |
Armand, M. and Tarascon, J. (2008) Building Better Batteries. Nature, 451, 652-657. https://doi.org/10.1038/451652a |
[22] |
Palacin, M. (2009) Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective. Chemical Society Reviews, 38, 2565-2575. https://doi.org/10.1039/b820555h |
[23] |
Ji, X., Lee, K. and Nazar, L. (2009) A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500-506. https://doi.org/10.1038/nmat2460 |
[24] |
Zhou, L., Danilov, D., Eichel, R. and Notten, P. (2021) Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed. Advanced Energy Materials, 11, Article ID: 2001304. https://doi.org/10.1002/aenm.202001304 |
[25] |
Bai, S., Liu, X., Zhu, K., Wu, S. and Zhou, H. (2016) Metal-Organic Framework-Based Separator for Lithium-Sulfur Batteries. Nature Energy, 1, Article No. 16094. https://doi.org/10.1038/nenergy.2016.94 |
[26] |
Ye, H. and Lee, J. (2020) Solid Additives for Improving the Performance of Sulfur Cathodes in Lithium-Sulfur Batteries-Adsorbents, Mediators, and Catalysts. Small Methods, 4, Article ID: 1900864. https://doi.org/10.1002/smtd.201900864 |
[27] |
Salem, H., Babu, G., Rao, C. and Arava, L. (2015) Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries. Journal of the American Chemical Society, 137, 11542-11545. https://doi.org/10.1021/jacs.5b04472 |
[28] |
Wu, J., Ye, T., Wang, Y., Yang, P., Wang, Q., Kuang, W., Chen, X., Duan, G., Yu, L., Jin, Z., Qin, J. and Lei, Y. (2022) Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries. ACS Nano, 16, 15734-15759. https://doi.org/10.1021/acsnano.2c08581 |
[29] |
Wang, F., Li, J., Zhao, J., Yang, Y., Su, C., Zhong, Y., Yang, Q. and Lu, J. (2020) Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. ACS Materials Letters, 2, 1450-1463. https://doi.org/10.1021/acsmaterialslett.0c00396 |
[30] |
Lu, C., Chen, Y., Yang, Y. and Chen, X. (2020) Single-Atom Catalytic Materials for Lean-Electrolyte Ultrastable Lithium-Sulfur Batteries. Nano Letters, 20, 5522-5530. https://doi.org/10.1021/acs.nanolett.0c02167 |
[31] |
Zhao, H., Tian, B., Su, C. and Li, Y. (2021) Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 13, 7171-7177. https://doi.org/10.1021/acsami.0c20446 |
[32] |
Ma, C., Zhang, Y., Feng, Y., Wang, N., Zhou, L., Liang, C., Chen, L., Lai, Y., Ji, X., Yan, C. and Wei, W. (2021) Engineering Fe-N Coordination Structures for Fast Redox Conversion in Lithium-Sulfur Batteries. Advanced Materials, 33, Article ID: 2100171. https://doi.org/10.1002/adma.202100171 |
[33] |
Zhang, Y., Liu, J., Wang, J., Zhao, Y., Luo, D., Yu, A., Wang, X. and Chen, Z. (2021) Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Drable Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 133, 26826-26833. https://doi.org/10.1002/ange.202108882 |
[34] |
Qiu, Y., Fan, L., Wang, M., Yin, X., Wu, X., Sun, X., Tian, D., Guan, B., Tang, D. and Zhang, N. (2020) Precise Synthesis of Fe-N2 sSites with High Activity and Stability for Long-Life Lithium-Sulfur Batteries. ACS Nano, 14, 16105-16113. https://doi.org/10.1021/acsnano.0c08056 |
[35] |
Wang, J., Qiu, W., Li, G., Liu, J., Luo, D., Zhang, Y., Zhao, Y., Zhou, G., Shui, L., Wang, X. and Chen, Z. (2022) Coordinatively Deficient Single-Atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-Performance Lithium-Sulfur Batteries. Energy Storage Materials, 46, 269-277. https://doi.org/10.1016/j.ensm.2021.12.040 |
[36] |
Du, Z., Chen, X., Hu, W., Chuang, C., Xie, S., Hu, A., Yan, W., Kong, X., Wu, X., Ji, H. and Wan, L. (2019) Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. Journal of the American Chemical Society, 141, 3977-3985. https://doi.org/10.1021/jacs.8b12973 |
[37] |
Fang, D., Sun, P., Huang, S., Shang, Y., Li, X., Yan, D., Lim, Y., Su, C., Su, B., Juang, J. and Yang, H. (2022) An Exfoliation-Evaporation Strategy to Regulate N Coordination Number of Co Single-Atom Catalysts for High-Performance Lithium-Sulfur Batteries. ACS Materials Letters, 4, 1-10. https://doi.org/10.1021/acsmaterialslett.1c00414 |
[38] |
Wang, Z., Shen, J., Xu, X., Yuan, J., Zuo, S., Liu, Z., Zhang, D. and Liu, J. (2022) In-Situ Synthesis of Carbon-Encapsulated Atomic Cobalt as Highly Eefficient Polysulfide Electrocatalysts for Highly Stable Lithium-Sulfur Batteries. Small, 18, Article ID: 2106640. https://doi.org/10.1002/smll.202106640 |
[39] |
Huang, T., Sun, Y., Wu, J., Jin, J., Wei, C., Shi, Z., Wang, M., Cai, J., An, X., Wang, P., Su, C., Li, Y. and Sun, J. (2021) A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co-Nx Dispersions for Longevous Li-S Full Batteries. ACS Nano, 15, 14105-14115. https://doi.org/10.1021/acsnano.1c04642 |
[40] |
Li, Y., Wu, J., Zhang, B., Wang, W., Zhang, G., Seh, Z., Zhang, N., Sun, J., Huang, L., Jiang, J., Zhou, J. and Sun, Y. (2020) Fast Conversion and Controlled Deposition of Lithium (Poly)sulfides in Lithium-Sulfur Batteries Using High-Loading Cobalt Single Atoms. Energy Storage Materials, 30, 250-259. https://doi.org/10.1016/j.ensm.2020.05.022 |
[41] |
Wang, R., Wu, R., Ding, C., Chen, Z., Xu, H., Liu, Y., Zhang, J., Ha, Y., Fei, B. and Pan, H. (2021) Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li-S Batteries. Nano-Micro Letters, 13, Article No. 151. https://doi.org/10.1007/s40820-021-00676-6 |
[42] |
Zhang, S., Ao, X., Huang, J., Wei, B., Zhai, Y., Zhai, D., Deng, W., Su, C., Wang, D. and Li, Y. (2021) Isolated Single-Atom Ni-N5 Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium-Sulfur Batteries. Nano Letters, 21, 9691-9698. https://doi.org/10.1021/acs.nanolett.1c03499 |
[43] |
Wang, R., Wu, R., Yan, X., Liu, D., Guo, P., Li, W. and Pan, H. (2022) Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. Advanced Functional Materials, 32, Article ID: 2200424. https://doi.org/10.1002/adfm.202200424 |
[44] |
Ma, F., Wan, Y., Wang, X., Wang, X., Liang, J., Miao, Z., Wang, T., Ma, C., Lu, G., Han, J., Huang, Y. and Li, Q. (2020) Bifunctional Atomically Dispersed Mo-N2/C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium-Sulfur Batteries. ACS Nano, 14, 10115-10126. https://doi.org/10.1021/acsnano.0c03325 |
[45] |
Zhou, G., Zhao, S., Wang, T., Yang, S., Johannessen, B., Chen, H. Liu, C., Ye, Y., Wu, Y., Peng, Y., Liu, C., Jiang, S., Zhang, Q. and Cui, Y. (2020) Theoretical Calculation Guided Design of Single-Atom Catalysts Toward Fast Kinetic and Long-Life Li-S Batteries. Nano Letters, 2, 1252-1261. https://doi.org/10.1021/acs.nanolett.9b04719 |
[46] |
Wang, P., Xi, B., Zhang, Z., Huang, M., Feng, J. and Xiong, S. (2021) Atomic Tungsten on Graphene with UniqueCoordination Enabling Kinetically Boosted Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 133, 15563-15699. https://doi.org/10.1002/anie.202104053 |
[47] |
Li, Y., Gao, T., Ni, D., Zhou, Y., Yousaf, M., Guo, Z., Zhou, J., Zhou, P., Wang, Q. and Guo, S. (2022) Two Birds with One Stone, Interfacial Engineering of Multifunctional Janus Separator for Lithium-Sulfur Batteries, Advanced Materials, 34, Article ID: 2107638. https://doi.org/10.1002/adma.202107638 |
[48] |
Liu, Z., Zhou, L., Ge, Q., Chen, R., Ni, M., Utetiwabo, W., Zhang, X. and Yang, W. (2018) Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 10, 19311-19317. https://doi.org/10.1021/acsami.8b03830 |
[49] |
Wang, C., Song, H., Yu, C., Ullah, Z., Guan, Z., Chu, R., Zhang, Y., Zhao, L., Li, Q. and Liu, L. (2020) Iron Single-Atom Catalyst Anchored on Nitrogen-Rich MOF-Derived Carbon Nanocage to Accelerate Polysulfide Redox Conversion for Lithium Sulfur Batteries. Journal of Materials Chemistry A, 8, 3421-3430. https://doi.org/10.1039/C9TA11680J |
[50] |
Wang, Y., Adekoya, D., Sun, J., Tang, T., Qiu, H., Xu, L., Zhang, S. and Hou, Y. (2019) Manipulation of Edge-Site Fe-N2 Moiety on Holey Fe, N Codoped Graphene to Promote the Cycle Stability and Rate Capacity of Li-S Batteries. Advanced Functional Materials, 29, Article ID: 1807485. https://doi.org/10.1002/adfm.201807485 |
[51] |
Zhang, L., Liu, D., Muhammad, Z., Wan, F., Xie, W., Wang, Y., Song, L., Niu, Z. and Chen, J. (2019) Single Nickel Atoms on Nitrogen-Doped Graphene Enabling Enhanced Kinetics of Lithium-Sulfur Batteries. Advanced Materials, 31, Article ID: 1903955. https://doi.org/10.1002/adma.201903955 |
[52] |
Shi, H., Ren, X., Lu, J., Dong, C., Liu, J., Yang, Q., Chen, J. and Wu, Z. (2020) Dual-Functional Atomic Znc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 10, Article ID: 2002271. https://doi.org/10.1002/aenm.202002271 |
[53] |
Song, C., Li, Z., Ma, L., Li, M., Huang, S., Hong, X., Cai, Y. and Lan, Y. (2021) Single-Atom Zinc and Anionic Fframework as Janus Separator Coatings for Efficient Inhibition of Lithium Dendrites and Shuttle Effect. ACS Nano, 15, 13436-13443. https://doi.org/10.1021/acsnano.1c03876 |
[54] |
Han, Z., Zhao, S., Xiao, J., Zhong, X., Sheng, J., Lv, W., Zhang, Q., Zhou, G. and Cheng, H. (2021) Engineering d-p Orbital Hybridization in Single-Atom Metal-Embedded Three-Dimensional Electrodes for Li-S Batteries. Advanced Materials, 33, Article ID: 2105947. https://doi.org/10.1002/adma.202105947 |
[55] |
Han, F., Fan, L., Zhang, Z., Zhang, X. and Wu, L. (2023) Platinum Electrocatalyst Promoting Redox Kinetics of Li2S and Regulating Li2S Nucleation for Lithium-Sulfur Batteries. Small, Article ID: 2307950. https://doi.org/10.1002/smll.202307950 |
[56] |
Zuo, P., Hua, J., He, M., Zhang, H., Qian, Z., Ma, Y., Du, C., Chen, X., Gao, Y. and Yin, G. (2017) Facilitating the Redox Reaction of Polysulfides by an Electrocatalytic Layer-Modified Separator for Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 5, 10936-10945. https://doi.org/10.1039/C7TA02245J |
[57] |
Yu, M., Zhou, S., Wang, Z., Wang, Y., Zhang, N., Wang, S., Zhao, J. and Qiu, J. (2019) Accelerating Polysulfide Redox Conversion on Bifunctional Electrocatalytic Electrode for Stable Li-S Batteries. Energy Storage Materials, 20, 98-107. https://doi.org/10.1016/j.ensm.2018.11.028 |
[58] |
Zeng, P., Peng, J., Yu, H., Zhou, X., Wang, K., Liu, J., Zhou, Z., Chen, M., Miao, C., Guo, X., Chang, B. and Wang, X. (2022) In-Situ Synthesis of Highly Graphitized and Fe/N Enriched Carbon Tubes as Catalytic Mediums for Promoting Multi-Step Conversion of Lithium Polysulfides. Carbon, 192, 418-428. https://doi.org/10.1016/j.carbon.2022.02.045 |
[59] |
Ye, H., Sun, J., Zhang, S., Lin, H., Zhang, T., Yao, Q. and Lee, J. (2019) Stepwise Electrocatalysis as a Strategy Against Polysulfide Shuttling in Li-S Batteries. ACS Nano, 13, 14208-14216. https://doi.org/10.1021/acsnano.9b07121 |
[60] |
Wang, D., Ma, K., Hao, J., Zhang, W., Wang, C., Xu, C., Shi, H., Ji, Z., Yan, X. and Gu, Y. (2021) Multifunction Co-Nx Species to Manipulate Polysulfides Conversion Kinetics toward Highly Efficient Lithium-Sulfur Batteries. Nano Energy, 89, Article ID: 106426. https://doi.org/10.1016/j.nanoen.2021.106426 |
[61] |
Li, Y., Wang, W., Zhang, B., Fu, L., Wan, M., Li, G., Cai, Z., Tu, S., Duan, X., Seh, Z., Jiang, J. and Sun, Y. (2021) Manipulating Redox Kinetics of Sulfur Species Using Mott-Schottky Electrocatalysts for Advanced Lithium-Sulfur Batteries. Nano Letters, 21, 6656-6663. https://doi.org/10.1021/acs.nanolett.1c02161 |
[62] |
Su, L., Zhang, J., Chen, Y., Yang, W., Wang, J., Ma, Z., Shao, G. and Wang, G. (2021) Cobalt-Embedded Hierarchically-Porous Hollow Carbon Microspheres as Multifunctional Confined Reactors for High-Loading Li-S Batteries. Nano Energy, 85, Article ID: 105981. https://doi.org/10.1016/j.nanoen.2021.105981 |
[63] |
Yuan, C., Zeng, P., Cheng, C., Yan, T., Liu, G., Wang, W., Hu, J., Li, X., Zhu, J. and Zhang, L. (2021) Boosting the Rate Performance of Li-S Batteries via Highly Dispersed Cobalt Nanoparticles Embedded into Nitrogen-Doped Hierarchical Porous Carbon. CCS Chemistry, 4, 2826-2841. https://doi.org/10.31635/ccschem.021.202101214 |
[64] |
Zhao, T., Chen, J., Yuan, M., Dai, K., Zhang, J., Li, S., He, H., Liu, Z. and Zhang, G. (2021) Local Charge Rearrangement to Boost the Chemical Adsorption and Catalytic Conversion of Polysulfides for High-Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 9, 7566-7574. https://doi.org/10.1039/D0TA11880J |
[65] |
Zhang, K., Cai, W., Liu, Y., Hu, G., Hu, W., Kong, Y., Zhang, X., Wang, L. and Li, G. (2022) Nitrogen-Doped Carbon Embedded with Ag Nanoparticles for Bidirectionally-Promoted Polysulfide Redox Electrochemistry. Chemical Engineering Journal, 427, Article ID: 130897. https://doi.org/10.1016/j.cej.2021.130897 |
[66] |
Cao, X., Zhang, M., Zhu, F. and Zhang, X. (2022) Fabrication and Characterization of N-Doped Porous Carbon Co-Fe Alloy Composite Cathode Materials for Promoting the Electrochemical Performance of Li-S Batteries. Journal of Alloys and Compounds, 895, Article ID: 162609. https://doi.org/10.1016/j.jallcom.2021.162609 |
[67] |
Hu, Y., Cheng, C., Yan, T., Liu, G., Yuan, C., Yan, Y., Gu, Z., Zeng, P., Zheng, L., Zhang, J. and Zhang, L. (2021) Catalyzing Polysulfide Redox Conversion for Promoting the Electrochemical Performance of Lithium-Sulfur Batteries by CoFe Alloy. Chemical Engineering Journal, 421, Article ID: 129997. https://doi.org/10.1016/j.cej.2021.129997 |
[68] |
He, J., Bhargav, A. and Manthiram, A. (2021) High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts. ACS Nano, 15, 8583-8591. https://doi.org/10.1021/acsnano.1c00446 |
[69] |
Zhou, H., Zhang, X., Zou, M., Gu, S., Cai, Y. and Hong, X. (2021) MOF-Derived Bimetal ZnPd Alloy as a Separator Coating with Fast Catalysis of Lithium Polysulfides for Li-S Batteries. ACS Applied Energy Materials, 4, 13183-13190. https://doi.org/10.1021/acsaem.1c02797 |
[70] |
Xu, H., Hu, R., Zhang, Y., Yan, H., Zhu, Q., Shang, J. and Li, B. (2021) Nano High-Entropy Alloy with Strong Affinity Driving Fast Polysulfide Conversion towards Stable Lithium Sulfur Batteries. Energy Storage Materials, 43, 212-220. https://doi.org/10.1016/j.ensm.2021.09.003 |
[71] |
Fang, D., Wang, Y., Qian, C., Liu, X., Wang, X., Chen, S. and Zhang, S. (2019) Synergistic Regulation of Polysulfides Conversion and Deposition by MOF-Derived Hierarchically Ordered Carbonaceous Composite for High-Energy Lithium-Sulfur Batteries. Advanced Functional Materials, 29, Article ID: 1900875. https://doi.org/10.1002/adfm.201900875 |
[72] |
Qiao, Z., Zhou, F., Zhang, Q., Pei, F., Zheng, H., Xu, W., Liu, P., Ma, Y., Xie, Q., Wang, L., Fang, X. and Peng, D. (2019) Chemisorption and Electrocatalytic Effect from CoxSny Alloy for High Performance Lithium Sulfur Batteries. Energy Storage Materials, 23, 62-71. https://doi.org/10.1016/j.ensm.2019.05.032 |
[73] |
Chen, Y., Wang, T., Tian, H., Su, D., Zhang, Q. and Wang, G. (2021) Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 33, Article ID: 2003666. https://doi.org/10.1002/adma.202003666 |
[74] |
Wang, P., Xi, B., Huang, M., Chen, W., Feng, J. and Xiong, S. (2021) Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries. Advanced Energy Materials, 11, Article ID: 2002893. https://doi.org/10.1002/aenm.202002893 |
[75] |
Li, Z., Wu, J., Chen, P., Zeng, Q., Wen, X., Wen, W., Liu, Y., Chen, A., Guan, J., Liu, X., Liu, W., Zhou, H. and Zhang, L. (2022) A New Metallic Composite Cathode Originated form Hyperbranched Polymer Coated MOF for High-Performance Lithium-Sulfur Batteries. Chemical Engineering Journal, 435, Article ID: 135125. https://doi.org/10.1016/j.cej.2022.135125 |
[76] |
Gu, L., Gao, J., Wang, C., Qiu, S., Wang, K., Gao, X., Sun, K., Zuo, P. and Zhu, X. (2020) Thin-Carbon- Layer-Enveloped Cobalt-Iron Oxide Nanocages as a High-Efficiency Sulfur Container for Li-S Batteries. Journal of Materials Chemistry A, 8, 20604-20611. https://doi.org/10.1039/D0TA07579E |
[77] |
Peng, H., Zhang, Y., Chen, Y., Zhang, J., Jiang, H., Chen, X., Zhang, Z., Zeng, Y., Sa, B., Wei, Q., Lin, J. and Guo, H. (2020) Reducing Polarization of Lithium-Sulfur Batteries via ZnS/Reduced Graphene Oxide Accelerated Lithium Polysulfide Conversion. Materials Today Energy, 18, Article ID: 100519. https://doi.org/10.1016/j.mtener.2020.100519 |
[78] |
Wang, X., Zhao, X., Ma, C., Yang, Z., Chen, G., Wang, L., Yue, H., Zhang, D. and Sun, Z. (2020) Electrospun Carbon Nanofibers with MnS Sulfiphilic Sites as Efficient Polysulfide Barriers for High-Performance Wide-Temperature- Range Li-S Batteries. Journal of Materials Chemistry A, 8, 1212-1220. https://doi.org/10.1039/C9TA12137D |
[79] |
Cai, D., Liu, B., Zhu, D., Chen, D., Lu, M., Cao, J., Wang, Y., Huang, W., Shao, Y., Tu, H. and Han, W. (2020) Ultrafine Co3Se4 Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-Life Lithium Sulfur Batteries. Advanced Energy Materials, 10, Article ID: 1904273. https://doi.org/10.1002/aenm.202070088 |
[80] |
Yao, Y., Chang, C., Sun, H., Guo, D., Li, R., Pu, X. and Zhai, J. (2022) Hollow Ni3Se4 with High Tap Density as a Carbon-Free Sulfur Immobilizer to Rrealize High Volumetric and Gravimetric Capacity for Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 14, 25267-25277. https://doi.org/10.1021/acsami.2c01951 |
[81] |
Shen, Z., Zhang, Z., Li, M., Yuan, Y., Zhao, Y., Zhang, S., Zhong, C., Zhu, J., Lu, J. and Zhang, H. (2020) Rational Design of a Ni3N0.85 Electrocatalyst to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Nano, 14, 6673-6682. https://doi.org/10.1021/acsnano.9b09371 |
[82] |
Zhang, H., Dai, R., Zhu, S., Zhou, L., Xu, Q. and Min, Y. (2022) Bimetallic Nitride Modified Separator Constructs Internal Electric Field for High-Performance Lithium-Sulfur Battery. Chemical Engineering Journal, 429, Article ID: 132454. https://doi.org/10.1016/j.cej.2021.132454 |
[83] |
Li, Y., Xu, P., Chen, G., Mou, J., Xue, S., Li, K., Zheng, F., Dong, Q., Hu, J., Yang, C. and Liu, M. (2020) Enhancing Li-S Redox Kinetics by Fabrication of a Three Dimensional Co-CoP@Nitrogen-Doped Carbon Electrocatalyst. Chemical Engineering Journal, 380, Article ID: 122595. https://doi.org/10.1016/j.cej.2019.122595 |
[84] |
Ye, Z., Jiang, Y., Feng, T., Wang, Z., Li, L., Wu, F. and Chen, R. (2020) Curbing Polysulfide Shuttling by Synergistic Engineering Layer Composed of Supported Sn4P3 Nanodots Electrocatalyst in Lithium-Sulfur Batteries. Nano Energy, 70, Article ID: 104532. https://doi.org/10.1016/j.nanoen.2020.104532 |
[85] |
Weng, W., Xiao, J., Shen, Y. and Liang, X. (2021) Molten Salt Electrochemical Modulation of Iron-Carbon-Nitrogen for Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 60, 24905-24909. https://doi.org/10.1002/anie.202111707 |
[86] |
Wang, S., Liu, X., Duan, H., Deng, Y. and Chen, G. (2021) Fe3C/Fe Nanoparticles Embedded in N-Doped Porous Carbon Nanosheets and Graphene: A Thin Functional Interlayer for PP Separator to Boost Performance of Li-S Batteries. Chemical Engineering Journal, 415, Article ID: 129001. https://doi.org/10.1016/j.cej.2021.129001 |
[87] |
Wang, B., Wang, L., Zhang, B., Kong, Z., Zeng, S., Zhao, M., Qian, Y. and Xu, L. (2022) Ultrafine Zirconium Boride Nanoparticles Constructed Bidirectional Catalyst for Ultrafast and Long-Lived Lithium-Sulfur Batteries. Energy Storage Materials, 45, 130-141. https://doi.org/10.1016/j.ensm.2021.11.039 |
[88] |
Li, Z., Li, P., Meng, X., Lin, Z. and Wang, R. (2021) The Interfacial Electronic Engineering in Binary Sulfiphilic Cobalt Boride Heterostructure Nanosheets for Upgrading Energy Density and Longevity of Lithium-Sulfur Batteries. Advanced Materials, 33, Article ID: 2102338. https://doi.org/10.1002/adma.202102338 |
[89] |
Zhou, Z., Chen, Z., Lv, H., Zhao, Y., Wei, H., Chen, B. and Wang, Y. (2022) A Hollow Co0.12Ni1.88S2/NiO Heterostructure that Synergistically Facilitates Lithium Polysulfide Adsorption and Conversion for Lithium-Sulfur Batteries. Energy Storage Materials, 51, 486-499. https://doi.org/10.1016/j.ensm.2022.07.001 |
[90] |
Xu, Z., Wang, Z., Wang, M., Cui, H., Liu, Y., Wei, H. and Li, J. (2021) Large-Scale Synthesis of Fe9S10/Fe3O4@C Heterostructure as Integrated Trapping-Catalyzing Interlayer for Highly Efficient Lithium-Sulfur Batteries. Chemical Engineering Journal, 422, Article ID: 130049. https://doi.org/10.1016/j.cej.2021.130049 |
[91] |
Wang, Y., Xu, L., Zhan, L., Yang, P., Tang, S., Liu, M., Zhao, X., Xiong, Y., Chen, Z. and Lei, Y. (2022) Electron Accumulation Enables Bi Efficient CO2 Reduction for Formate Production to Boost Clean Zn-CO2 Batteries. Nano Energy, 92, Article ID: 106780. https://doi.org/10.1016/j.nanoen.2021.106780 |
[92] |
Cheng, Z., Wang, Y., Zhang, W. and Xu, M. (2021) Correction to Boosting Polysulfide Conversionin Lithium-Sulfur Batteries by Cobalt-Doped Vanadium Nitride Microflowers. ACS Applied Energy Materials, 4, 6375. https://doi.org/10.1021/acsaem.1c01371 |
[93] |
Wang, L., Zhang, M., Zhang, B., Wang, B., Dou, J., Kong, Z., Wang, C., Sun, X., Qian, Y. and Xu, L. (2021) A Porous Polycrystalline NiCo2Px as a Highly Efficient Host for Sulfur Cathodes in Li-S Batteries. Journal of Materials Chemistry A, 9, 23149-23156. https://doi.org/10.1039/D1TA06249B |
[94] |
Wang, Y., Liu, B., Liu, Y., Song, C., Wang, W., Li, W., Feng, Q. and Lei, Y. (2020) Accelerating Charge Transfer to Enhance H2 Evolution of Defect-rich CoFe2O4 by Constructing a Schottky Junction. Chemical Communications, 56, 14019-14022. https://doi.org/10.1039/D0CC05656A |
[95] |
Lu, Y., Qin, J., Shen, T., Yu, Y., Chen, K., Hu, Y., Liang, J., Gong, M., Zhang, J. and Wang, D. (2021) Hypercrosslinked Polymerization Enabled N-Doped Carbon Confined Fe2O3 Facilitating Li Polysulfides Interface Conversion for Li-S Batteries. Advanced Energy Materials, 11, Article ID: 2101780. https://doi.org/10.1002/aenm.202101780 |
[96] |
Kim, Y., Noh, Y., Bae, J., Ahn, H., Kim, M. and Kim, W. (2021) N-Doped Carbon-Embedded TiN Nanowires as a Multifunctional Separator for Li-S Batteries with Enhanced Rate Capability and Cycle Stability. Journal of Energy Chemistry, 57, 10-18. https://doi.org/10.1016/j.jechem.2020.08.050 |
[97] |
Shao, A., Zhang, X., Zhang, Q., Li, X., Wu, Y., Zhang, Z., Yu, J. and Yang, Z. (2021) Ultrathin Nanosheet-Assembled Flowerlike NiSe2 Catalyst Boosts Sulfur Redox Reaction Kinetics for Li-S Batteries. ACS Applied Energy Materials, 4, 3431-3438. https://doi.org/10.1021/acsaem.0c03189 |
[98] |
Wang, X., Deng, N., Liu, Y., Wei, L., Wang, H., Li, Y., Cheng, B. and Kang, W. (2022) Porous and Heterostructured Molybdenum-Based Phosphide and Oxide Nanobelts Assisted by the Structural Engineering to Enhance Polysulfide Anchoring and Conversion for Lithium-Sulfur Batteries. Chemical Engineering Journal, 450, Article ID: 138191. https://doi.org/10.1016/j.cej.2022.138191 |
[99] |
Chen, K., Zhang, G., Xiao, L., Li, P., Li, W., Xu, Q. and Xu, J. (2021) Polyaniline Encapsulated Amorphous V2O5 Nanowire-Modified Multi-Functional Separators for Lithium-Sulfur Batteries. Small Methods, 5, Article ID: 2001056. https://doi.org/10.1002/smtd.202001056 |
[100] |
Han, J., Fu, Q., Xi, B., Ni, X., Yan, C., Feng, J. and Xiong, S. (2021) Loading Fe3O4 Nanoparticles on Paper-Derived Carbon Scaffold Toward Advanced Lithium-Sulfur Batteries. Journal of Energy Chemistry, 52, 1-11. https://doi.org/10.1016/j.jechem.2020.04.002 |
[101] |
Tian, Y., Wei, Z., Li, F., Li, S., Shao, L., He, M., Sun, P. and Li, Y. (2022) Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by SnO2-Decorated MoS2 Hollow Microspheres for High-Performance Lithium-Sulfur Batteries. Journal of Materials Science & Technology, 100, 216-223. https://doi.org/10.1016/j.jmst.2021.06.002 |
[102] |
Li, N., Ma, H., Wang, L., Zhao, Y., Bakenov, Z. and Wang, X. (2021) Dealloying-Derived Nanoporous Deficient Titanium Oxide as High-Performance Bifunctional Sulfur Host-Catalysis Material in Lithium-Sulfur Battery. Journal of Materials Science & Technology, 84, 124-132. https://doi.org/10.1016/j.jmst.2020.11.073 |
[103] |
Yin, C., Li, Q., Zheng, J., Ni, Y., Wu, H., Kjøniksen, A., Liu, C., Lei, Y. and Zhang, Y. (2022) Progress in Regulating Electronic Structure Strategies on Cu-Based Bimetallic Catalysts for CO2 Reduction Reaction. Advanced Powder Materials, 1, Article ID: 100055. https://doi.org/10.1016/j.apmate.2022.100055 |
[104] |
Hou, W., Feng, P., Guo, X., Wang, Z., Bai, Z., Bai, Y., Wang, G. and Sun, K. (2022) Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium-Sulfur Batteries. Advanced Materials, 34, Article ID: 2202222. https://doi.org/10.1002/adma.202202222 |
[105] |
Gueon, D., Kim, T., Lee, J. and Moon, J. (2022) Exploring the Janus Structure to Improve Kinetics in Sulfur Conversion of Li-S Batteries. Nano Energy, 95, Article ID: 106980. https://doi.org/10.1016/j.nanoen.2022.106980 |
[106] |
He, Z., Wan, T., Luo, Y., Liu, G., Wu, L., Li, F., Zhang, Z., Li, G. and Zhang, Y. (2022) Three-Dimensional Structural Confinement Design of Conductive Metal Oxide for Efficient Sulfur Host in Lithium-Sulfur Batteries. Chemical Engineering Journal, 448, Article ID: 137656. https://doi.org/10.1016/j.cej.2022.137656 |
[107] |
Liu, M., Jhulki, S., Sun, Z., Magasinski, A., Hendrix, C. and Yushin, G. (2021) Atom-Economic Synthesis of Magnéli Phase Ti4O7 Microspheres for Improved Sulfur Cathodes in Li-S Batteries. Nano Energy, 79, Article ID: 105428. https://doi.org/10.1016/j.nanoen.2020.105428 |
[108] |
Li, R., Rao, D., Zhou, J., Wu, G., Wang, G., Zhu, Z., Han, X., Sun, R., Li, H., Wang, C., Yan, W., Zheng, X., Cui, P., Wu, Y., Wang, G. and Hong, X. (2021) Amorphization-Induced Surface Eelectronic Sates Modulation of Cobaltous Oxide Nanosheets for Lithium-Sulfur Batteries. Nature Communications, 12, Article No. 3102. https://doi.org/10.1038/s41467-021-23349-9 |
[109] |
Sun, T., Zhao, X., Li, B., Shu, H., Luo, L., Xia, W., Chen, M., Zeng, P., Yang, X., Gao, P., Pei, Y. and Wang, X. (2021) NiMoO4 Nanosheets Anchored on N-S Doped Carbon Clothes with Hierarchical Structure as a Bidirectional Catalyst toward Accelerating Polysulfides Conversion for Li-S Battery. Advanced Functional Materials, 31, Article ID: 2101285. https://doi.org/10.1002/adfm.202101285 |
[110] |
Li, N., Meng, T., Ma, L., Zhang, H., Yao, J., Xu, M., Li, C. and Jiang, J. (2020) Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li-S Cells. Nano-Micro Letters, 12, Article No. 145. https://doi.org/10.1007/s40820-020-00484-4 |
[111] |
Hu, S., Yi, M., Wu, H., Wang, T., Ma, X., Liu, X. and Zhang, J. (2022) Ionic-Liquid-Assisted Synthesis of N, F, and B Co-Doped CoFe2O4−x on Multiwalled Carbon Nanotubes with Enriched Oxygen Vacancies for Li-S Batteries. Advanced Functional Materials, 32, Article ID: 2111084. https://doi.org/10.1002/adfm.202111084 |
[112] |
Cheng, H., Zhang, S., Li, S., Gao, C., Zhao, S., Lu, Y. and Wang, M. (2022) Engineering Fe and V Coordinated Bimetallic Oxide Nanocatalyst Enables Enhanced Polysulfides Mediation for High Energy Density Li-S Battery. Small, 18, Article ID: 2202557. https://doi.org/10.1002/smll.202202557 |
[113] |
Li, Z., Zhang, Q., Hencz, L., Liu, J., Kaghazchi, P., Han, J., Wang, L. and Zhang, S. (2021) Multifunctional Cation-Vacancy-Rich ZnCo2O4 Polysulfide-Blocking Layer for Ultrahigh-Loading Li-S Battery. Nano Energy, 89, Article ID: 106331. https://doi.org/10.1016/j.nanoen.2021.106331 |
[114] |
Sun, W., Lu, Y. and Huang, Y. (2021) An Effective Sulfur Conversion Catalyst Based on MnCo2O4.5 Modified Graphitized Carbon Nitride Nanosheets for High-Performance Li-S Batteries. Journal of Materials Chemistry A, 9, 21184-21196. https://doi.org/10.1039/D1TA04111H |
[115] |
Li, Z., Zhou, C., Hua, J., Hong, X., Sun, C., Li, H., Xu, X. and Mai, L. (2020) Engineering Oxygen Vacancies in a Polysulfide-Blocking Layer with Enhanced Catalytic Ability. Advanced Materials, 32, Article ID: 1907444. https://doi.org/10.1002/adma.201907444 |
[116] |
Chen, M., Jiang, S., Huang, C., Xia, J., Wang, X., Xiang, K., Zeng, P., Zhang, Y. and Jamil, S. (2018) Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 10, 13562-13572. https://doi.org/10.1021/acsami.8b02029 |
[117] |
Tao, X., Wang, J., Ying, Z., Cai, Q., Zheng, G., Gan, Y., Huang, H., Xia, Y., Liang, C., Zhang, W. and Cui, Y. (2014) Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n−1 Nanomaterials for Improving Lithium-Sulfur Batteries. Nano Letters, 14, 5288-5294. https://doi.org/10.1021/nl502331f |
[118] |
Guo, B., Ma, Q., Zhang, L., Yang, T., Liu, D., Zhang, X., Qi, Y., Bao, S. and Xu, M. (2021) Yolk-Shell Porous Carbon Spheres@CoSe2 Nanosheets as Multilayer Defenses System of Polysulfide for Advanced Li-S Batteries. Chemical Engineering Journal, 413, Article ID: 127521. https://doi.org/10.1016/j.cej.2020.127521 |
[119] |
Fan, C., Zheng, Y., Zhang, X., Shi, Y., Liu, S., Wang, H., Wu, X., Sun, H. and Zhang, J. (2018) High-Performance and Low-Temperature Lithium-Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation. Advanced Energy Materials, 8, Article ID: 1703638. https://doi.org/10.1002/aenm.201703638 |
[120] |
Su, H., Lu, L., Yang, M., Cai, F., Liu, W., Li, M., Hu, X., Ren, M., Zhang, X. and Zhou, Z. (2022) Decorating CoSe2 on N-Doped Carbon Nanotubes as Catalysts and Efficient Polysulfides Traps for Li-S Batteries. Chemical Engineering Journal, 429, Article ID: 132167. https://doi.org/10.1016/j.cej.2021.132167 |
[121] |
Sun, W., Li, Y., Liu, S., Liu, C., Tan, X. and Xie, K. (2021) Mechanism Investigation of Iron Selenide as Polysulfide Mediator for Long-Life Lithium-Sulfur Batteries. Chemical Engineering Journal, 416, Article ID: 129166. https://doi.org/10.1016/j.cej.2021.129166 |
[122] |
Wang, B., Sun, D., Ren, Y., Zhou, X., Ma, Y., Tang, S. and Meng, X. (2022) MOFs Derived ZnSe/N-Doped Carbon Nanosheets as Multifunctional Interlayers for Ultralong-Life Lithium-Sulfur Batteries. Journal of Materials Science & Technology, 125, 97-104. https://doi.org/10.1016/j.jmst.2022.02.030 |
[123] |
Wu, D., Shi, F., Zhou, G., Zu, C., Liu, C., Liu, K., Liu, Y., Wang, J., Peng, Y. and Cui, Y. (2018) Quantitative Investigation of Polysulfide Adsorption Capability of Candidate Materials in Li-S Batteries. Energy Storage Materials, 13, 241-246. https://doi.org/10.1016/j.ensm.2018.01.020 |
[124] |
Zhong, Y., Yin, L., He, P., Liu, W., Wu, Z. and Wang, H. (2018) Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries. Journal of the American Chemical Society, 140, 1455-1459. https://doi.org/10.1021/jacs.7b11434 |
[125] |
Yu, B., Ma, F., Chen, D., Srinivas, K., Zhang, X., Wang, X., Wang, B., Zhang, W., Wang, Z., He, W. and Chen, Y. (2021) MoP QDs@graphene as Highly Efficient Electrocatalyst for Polysulfide Conversion in Li-S Batteries. Journal of Materials Science & Technology, 90, 37-44. https://doi.org/10.1016/j.jmst.2021.04.001 |
[126] |
Li, W., Chen, K., Xu, Q., Li, X., Zhang, Q., Wen, J. and Xu, J. (2021) Mo2C/C Hierarchical Double-Shelled Hollow Spheres as Sulfur Host for Advanced Li-S Batteries. Angewandte Chemie International Edition, 60, 21512-21520. https://doi.org/10.1002/anie.202108343 |
[127] |
Zhang, Y., Zhang, P., Li, B., Zhang, S., Liu, K., Hou, R., Zhang, X., Silva, S. and Shao, G. (2020) Vertically Aligned Graphene Nanosheets on Multiyolk/Shell Structured TiC@C Nanofibers for Stable Li-S Batteries. Energy Storage Materials, 27, 159-168. https://doi.org/10.1016/j.ensm.2020.01.029 |
[128] |
Hong, X., Song, C., Wu, Z., Li, Z., Cai, Y., Wang, C. and Wang, H. (2021) Sulfophilic and Lithophilic Sites in Bimetal Nickel-Zinc Carbide with Fast Conversion of Polysulfides for High-Rate Li-S Battery. Chemical Engineering Journal, 404, Article ID: 126566. https://doi.org/10.1016/j.cej.2020.126566 |
[129] |
Balach, J., Linnemann, J., Jaumann, T., Giebeler, L., et al. (2018) Metal-Based Nanostructured Materials for Aadvanced Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 6, 23127-23168. https://doi.org/10.1039/C8TA07220E |
[130] |
Ai, X., Zou, X., Chen, H., Su, Y., Feng, X., Li, Q., Liu, Y., Zhang, Y. and Zou, X. (2020) Transition-Metal-Boron Intermetallics with Strong Interatomic d-sp Orbital Hybridization for High-Performance Electrocatalysis. Angewandte Chemie International Edition, 59, 3961-3965. https://doi.org/10.1002/anie.201915663 |
[131] |
He, J., Bhargav, A. and Manthiram, A. (2020) Molybdenum Boride Asan Efficient Catalyst for Polysulfide Redox to Enable High-Energy-Density Lithium-Sulfur-Batteries. Advanced Materials, 32, Article ID: 2004741. https://doi.org/10.1002/adma.202004741 |