[1] |
Cope, A.C. and Hardy, E.M. (1940) The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System. Journal of the American Chemical Society, 62, 441-444. https://doi.org/10.1021/ja01859a05 |
[2] |
Cope, A.C., Hoyle, K.E. and Heyl, D. (1941) The Rearrangement of Allyl Groups in Three-Carbon Systems. Journal of the American Chemical Society, 63, 1843-1852. https://doi.org/10.1021/ja01852a013 |
[3] |
Cope, A.C., Hofmann, C.M. and Hardy, E.M. (1940) The Rearrangement of Allyl Groups in Three-Carbon Systems II. Journal of the American Chemical Society, 63, 1852-1857. https://doi.org/10.1021/ja01852a014 |
[4] |
Enders, D., Knopp, M. and Schiffers, R. (1996) Asymmetric [3,3]-Sigmatropic Rearrangements in Organic Synthesis. Tetrahedron: Asymmetry, 7, 1847-1882. https://doi.org/10.1016/0957-4166(96)00220-0 |
[5] |
Ichikawa, H. and Maruoka, K. (2007) Aliphatic and Aromatic Claisen Rearrangement. In: Hiersemann, M. and Nubbemeyer, U., Eds., The Claisen Rearrangement: Methods and Applications, Wiley, Hoboken, 45. https://doi.org/10.1002/9783527610549.ch3 |
[6] |
Claisen, L. (1912) Über Umlagerung von Phenol-allyläthern in C-Allyl-phenole. Berichte der Deutschen Chemischen Gesellschaft, 45, 3157-3166. https://doi.org/10.1002/cber.19120450348 |
[7] |
Castro, T.S., Martins, G.F., de Alcântara Morais, S., et al. (2023) Aromaticity of Cope and Claisen Rearrangements. Theoretical Chemistry Accounts, 142, Article No. 40. https://doi.org/10.1007/s00214-023-02975-0 |
[8] |
Nowicki, J. (2000) Claisen, Cope and Related Rearrangements in the Synthesis of Favour and Fragrance Compounds. Molecules, 5, 1033-1050. https://www.x-mol.com/paperRedirect/1414150728425082880 |
[9] |
Ilardi, E.A., Stivala, C.E. and Zakarian, A. (2009) [3,3]-Sigmatropic Rearrangements: Recent Applications in the Total Synthesis of Natural Products. Chemical Society Reviews, 38, 3133-3148. https://doi.org/10.1039/B901177N |
[10] |
Paquette, L.A. (1997) Recent Applications of Anionic Oxy-Cope Rearrangements. Tetrahedron, 53, 13971-14020. https://doi.org/10.1016/S0040-4020(97)00679-0 |
[11] |
Davies, H.M.L. (1993) Tandem Cyclopropanation/Cope Rearrangement: A General Method for the Construction of Seven-Membered Rings. Tetrahedron, 49, 5203-5223. https://doi.org/10.1016/S0040-4020(01)82371-1 |
[12] |
Davies, H.M.L. and Lian, Y.J. (2012) The Combined C-H Functionalization/Cope Rearrangement: Discovery and Applications in Organic Synthesis. Accounts of Chemical Research, 45, 923-935. https://doi.org/10.1021/ar300013t |
[13] |
Krüger, S. and Gaich, T. (2014) Recent Applications of the Divinylcyclopropane-Cycloheptadiene Rearrangement in Organic Synthesis. The Beilstein Journal of Organic Chemistry, 10, 163-193. https://doi.org/10.3762/bjoc.10.14 |
[14] |
Huang, G. and Dong, Y. (2019) Application of Cope Rearrangement in Synthesis. Synthetic Communications, 49, 3101-3111. https://doi.org/10.1080/00397911.2019.1657460 |
[15] |
Kawasaki, T., Watanabe, K., Masuda, K. and Sakamoto, M. (1995) Tandem Wittig Reaction and Cope Rearrangement of 2-Allyl, 2-Dihydroindol-3-Ones to 3-Indole Acetates. Journal of the Chemical Society, Chemical Communications, No. 3, 381-382. https://doi.org/10.1039/C39950000381 |
[16] |
Kawasaki, T., Nonaka, Y., Watanabe, K., Ogawa, A., Higuchi, K., Terashima, R., Masuda, K. and Sakamoto, M. (2001) Reverse Aromatic Cope Rearrangement of 2-Allyl-3-Alkylideneindolines Driven by Olefination of 2-Allylindolin- 3-Ones: Synthesis of α-Allyl-3-Indole Acetate Derivatives. The Journal of Organic Chemistry, 66, 1200-1204. https://doi.org/10.1021/jo0014921 |
[17] |
Yang, Y. (2016) Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/Ortho-Cyanation Cascade. Angewandte Chemie International Edition, 55, 345-349. https://doi.org/10.1002/anie.201508294 |
[18] |
Khavani, M., Izadyar, M. and Rezaeiaeian, M. (2016) A DFT Study of Solvent Effects on the Kinetics and Mechanism of the [3,3] Hetero-Cope Rearrangement of 1-Butene Thiobenzoate. Tetrahedron Letters, 41, 109-213. https://doi.org/10.3184/146867816X14634977847625 |
[19] |
Cope, A.C., Field, L., MacDowell, D.W.H. and Wright, M.E. (1956) The Rearrangement of Allyl Groups in Three-Carbon Systems. VI. Benzene and Phenanthrene Derivatives. Journal of the American Chemical Society, 78, 2547-2551. https://doi.org/10.1021/ja01592a059 |
[20] |
Wertjes, W.C., Southgate, E.H. and Sarlah, D. (2018) Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chemical Society Reviews, 47, 7996-8017. https://doi.org/10.1039/C8CS00389K |
[21] |
Sura, T.P. and MacDowell, D.W.H. (1993) Cope Rearrangements in the Benzo[b]thiophene Series. The Journal of Organic Chemistry, 58, 4360-4369. https://doi.org/10.1021/jo00068a034 |
[22] |
Cope, A.C., Meili, J.E. and MacDowell, D.W.H. (1956) The Rearrangement of Allyl Groups in Three-Carbon Systems. VII. Diethyl α-Allyl-2-Naphthalenemalonate. Journal of the American Chemical Society, 78, 2551-2556. https://doi.org/10.1021/ja01592a060 |
[23] |
MacDowell, D.W.H. and Purpura, J.M. (1986) Cope Rearrangements in the Thiophene Series. The Journal of Organic Chemistry, 51, 183-188. https://doi.org/10.1021/jo00352a011 |
[24] |
Vázquez-Sánchez, A. and Ávila-Zárraga, J.G. (2017) A Formal Synthesis of (+/-) Parvifoline by an Aromatic Cope Rearrangement of a Trans-1-aryl-2-ethenylcyclobutanecarbon. Tetrahedron Letters. 58, 981-984. http://dx.doi.org/10.1016/j.tetlet.2017.01.087 |
[25] |
Vázquez-Sánchez, A. and Ávila-Zárraga, J.G. (2015) An Efficient Total Synthesis of (±)-Artenuifolene. Tetrahedron Letters. 56, 5321-5323. https://doi.org/10.1016/j.tetlet.2015.07.087 |
[26] |
Ávila-Zárraga, J.G., Vázquez-Sánchez, A. and Maldonado, L.Á. (2013) A Fused Benzocyclooctene Ring System via an Aromatic Cope Rearrangement: Thermal Reactions of Trans-1-Aryl-2-ethylcyclobutane Carbonitriles. HCT, 96, 1203-1407. https://doi.org/10.1002/hlca.201200352 |
[27] |
Allegre, K. and Tunge, J. (2019) Aryl Vinyl Cyclopropane Cope Rearrangements. Tetrahedron Letters, 75, 3319-3329. https://doi.org/10.1016/j.tet.2019.04.061 |
[28] |
Tsuruda, T., Tokumoto, N., Inoue, M., Nakajima, T. and Nemoto (2018) Synthesis of 7-Membered Ring Carbocycles via a Palladium-Catalyzed Intramolecular Allylic Alkylation-Isomerization-Cope Rearrangement Cascade. European Journal of Organic Chemistry, 2018, 2836-2840. https://doi.org/10.1002/ejoc.201800230 |
[29] |
Abegg, T., Cossy, J. and Meyer, C. (2022) Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinylazide. Organic Letters, 24, 4954-4959. https://doi.org/10.1021/acs.orglett.2c01888 |
[30] |
Fereyduni, E., Lahtigui, O., Sanders, J.N., et al. (2021) Overcoming Kinetic and Thermodynamic Challenges of Classic Cope Rearrangements. The Journal of Organic Chemistry, 86, 2632-2643. https://doi.org/10.1021/acs.orglett.2c01888 |
[31] |
Marvell, E.N. and Almond, S.W. (1979) The Aromatic Cope Rearrangement: Activation Parameters. Tetrahedron Letters, 20, 2777-2778. https://doi.org/10.1016/S0040-4039(01)86413-3 |
[32] |
Marvell, E.N. and Almond, S.W. (1979) The Aromatic Oxy-Cope Rearrangement. Tetrahedron Letters, 20, 2779-2780. https://doi.org/10.1016/S0040-4039(01)86414-5 |
[33] |
Jung, M.E. and Hudspeth, J.P. (1978) Anionic Oxy-Cope Rearrangements with Aromatic Substrates in Bicclo[2.2.1]heptene Systems. Facile Synthesis of cis-Hydrindanone Derivatives, Including Steroid Analogs. Journal of the American Chemical Society, 100, 4309-4311. https://doi.org/10.1021/ja00481a053 |
[34] |
Jung, M.E. and Hudspeth, J.P. (1980) Total Synthesis of (.+-.)-Coronafacic Acid: Use of Anionic Oxy-Cope Rearrangements on Aromatic Substrates in Synthesis. Journal of the American Chemical Society, 102, 2463-2464. https://doi.org/10.1021/ja00527a059 |
[35] |
Seki, K., Tooya, M., Sato, T., Ueno, M. and Uyehara, T. (1998) Novel Aromatic Oxy-Cope Rearrangement. Participation of a Benzene Ring and Intramolecular Potassium-Ion Detachment by Methoxy Groups. Tetrahedron Letters, 39, 8673-8676. https://doi.org/10.1016/S0040-4039(98)01869-3 |
[36] |
Ogawa, Y., Ueno, T., Karikomi, M., Seki, K., Haga, K. and Uyehara, T. (2002) Synthesis of 2-Acetoxy[5]helicene by Sequential Double Aromatic Oxy-Cope Rearrangement. Tetrahedron Letters, 43, 7827-7829. https://doi.org/10.1016/S0040-4039(02)01611-8 |
[37] |
Hussaini, S.S., Naresh Raj, A.R. and Huq, C.A.M.A. (2007) Synthesis of Functionalized Polycyclic Compounds via a Novel Aromatic Oxy-Cope Rearrangement. Tetrahedron Letters, 48, 775-778. https://doi.org/10.1016/j.tetlet.2006.11.177 |
[38] |
Fujimoto, Y., Watabe, Y., Yanai, H., Taguchi, T. and Matsumoto, T. (2016) An Efficient Isoprenylation of Xanthones at the C1 Position by Utilizing Anion-Accelerated Aromatic Oxy-Cope Rearrangement. Synlett, 27, 848-853. https://doi.org/10.1055/s-0035-1561326 |
[39] |
Fujimoto, Y., Yanai, H. and Matsumoto, T. (2016) Concise Total Synthesis of Elliptoxanthone A by Utilizing Aromatic Oxy-Cope Rearrangement for Efficient C-Isoprenylation of Xanthone Skeleton. Synlett, 27, 2229-2232. https://doi.org/10.1055/s-0035-1561476 |
[40] |
Fujimoto, Y., Takahashi, K., Kobayashi, R., Fukaya, H., Yanai, H. and Matsumoto, T. (2020) Anion-Accelerated Aromatic Oxy-Cope Rearrangement in Geranylation/Nerylation of Xanthone: Stereochemical Insights and Synthesis of Fuscaxanthone F. Synlett, 31, 1378-1383. |
[41] |
De, S., et al. (2022) Diastereoselective Indole-Dearomative Cope Rearrangements by Compounding Minor Driving Forces. Organic Letters, 24, 3726-3730. https://doi.org/10.1021/acs.orglett.2c01381 |
[42] |
Mannchen, M.D., Ghiviriga, I., Abboud, K.A. and Grenning, A.J. (2021) 1,2,4-Trifunctionalized Cyclohexane Synthesis via a Diastereoselective Reductive Cope Rearrangement and Functional Group Interconversion Strategy. Organic Letters, 23, 8804-8809. https://doi.org/10.1021/acs.orglett.1c03310 |