[1] |
Conway, B.E. (1991) Transition from “Supercapacitors” to “Battery” Behavior in Electrochemical Energy Storage. Jour-nal of the Electrochemical Society, 138, 1539-1548. https://doi.org/10.1149/1.2085829 |
[2] |
Xiong, G.P., Meng, C.Z., Reifenberger, R.G. and Fisher, T.S. (2014) Graphitic Petal Electrodes for All-Solid-State Flexible Supercapacitors. Advanced Energy Materials, 4, Article ID: 1300515. https://doi.org/10.1002/aenm.201300515 |
[3] |
Lu, X.H., Yu, M.H., Wang, G.M., Tong, Y.X. and Li, Y. (2014) Flexible Solid-State Supercapacitors: Design, Fabrication and Applications. Energy & Environmental Science, 7, 2160-2181. https://doi.org/10.1039/c4ee00960f |
[4] |
Tamilarasan, P. and Ramaprabhu, S. (2013) Graphene Based All-Solid-State Supercapacitors with Ionic Liquid Incorporated Polyacrylonitrile Electrolyte. Energy, 51, 374-381. https://doi.org/10.1016/j.energy.2012.11.037 |
[5] |
Xiong, G.P., Meng, C.Z., Reifenberger, R.G., Irazaqui, P.P. and Fisher, T.S. (2014) A Review of Graphene-Based Electrochemical Microsupercapacitors. Electroanalysis, 26, 30-51. https://doi.org/10.1002/elan.201300238 |
[6] |
Gwon, H., Kim, H.S., Lee, K.U., Seo, D.H., Park, Y.C., Lee, Y.S., et al. (2011) Flexible Energy Storage Devices Based on Graphene Paper. Energy & Environmental Science, 4, 1277-1283. https://doi.org/10.1039/c0ee00640h |
[7] |
Wang, K., Zhao, P., Zhou, X.M., Wu, H.P. and Wei, Z.X. (2011) Flexible Supercapacitors Based on Cloth-Supported Electrodes of Conducting Polymer Nanowire Array/SWCNT Composites. Journal of Materials Chemistry, 21, 16373-16378. https://doi.org/10.1039/c1jm13722k |
[8] |
Xu, C.K., Wu, J.M., Desai, U.V. and Gao, D. (2011) Multilayer Assem-bly of Nanowire Arrays for Dye-Sensitized Solar Sell. Journal of the American Chemical Society, 133, 8122-8125. https://doi.org/10.1021/ja202135n |
[9] |
Chaudhari, S., Sharma, Y., Archana, P.S., Jose, R., Ramakrishna, S., Mhaisalkr, S., et al. (2013) Electrospun Polyaniline Nanofibers Web Electrodes for Supercapacitors. Journal of Applied Polymer Science, 129, 1660-1668. https://doi.org/10.1002/app.38859 |
[10] |
Miao, F.J., Shao, C.L., Li, X.H., Lu, N., Wang, K.X., Zhang, X., et al. (2015) Flexible Solid-State Supercapacitors Based on Freestanding Electrodes of Electrospun Polyacryloni-trile@polyaniline Core-Shell Nanofibers. Electrochimica Acta, 176, 293-300. https://doi.org/10.1016/j.electacta.2015.06.141 |
[11] |
Wang, D.W., Li, F., Zhao, J.P., Ren, W.C., Chen, Z.G., Tan, J., et al. (2009) Fabrication of Graphene/Polyaniline Composite Paper via in situ Anodic Electropolymerization for High Performance Flexible Electrode. ACS Nano, 3, 1745-1752. https://doi.org/10.1021/nn900297m |
[12] |
He, X.P., Gao, B., Wang, G.B., Wei, J.T. and Zhao, C. (2013) A New Nanocomposite: Carbon Cloth Based Polyaniline for an Electrochemical Supercapacitor. Electrochim Acta, 111, 210-215. https://doi.org/10.1016/j.electacta.2013.07.226 |
[13] |
Wei, J.Y., Zhang, J.N., Liu, Y., Xu, G.H., Chen, Z.M. and Xu, Q. (2013) Controlled Growth of Whiskerlike Polyaniline on Carbon Nanofibers and Their Long Cycle Life for Superca-pacitors. RSC Advances, 3, 3957-3962. https://doi.org/10.1039/c3ra23040f |
[14] |
Tran, C., Singhal, R., Lawrence, D. and Kalra, V. (2015) Polyani-line-Coated Freestanding Porous Carbon Nanofibers as Efficient Hybrid Electrodes for Supercapacitors. Journal of Power Sources, 293, 373-379. https://doi.org/10.1016/j.jpowsour.2015.05.054 |
[15] |
Lei, D.Y., Devarayan, K., Seo, M.K., Kim, Y.G. and Kim, B.S. (2015) Flexible Polyaniline-Decorated Carbon Fiber Nanocomposite Mats as Supercapacitors. Materials Letters, 154, 173-176. https://doi.org/10.1016/j.matlet.2015.04.095 |
[16] |
Cheng, Y.L., Huang, L., Xiao, X., Yao, B., Yuan, L.Y., Li, T.Q., et al. (2015) Flexible and Crosslinked N-Doped Carbon Nanofiber Network for High Performance Free-standing Supercapacitor Electrode. Nano Energy, 15, 66-74. https://doi.org/10.1016/j.nanoen.2015.04.007 |
[17] |
Lin, W.H., Xu, K., Peng, J., Xing, Y.X., Gao, S.X., Ren, Y.Y., et al. (2015) Hierarchically Structured Carbon Nanofiber Silsesquioxane-Polyaniline Nanohybrids for Flexible Superca-pacitor Electrodes. Journal of Materials Chemistry A, 3, 8438-8449. https://doi.org/10.1039/C4TA06806H |
[18] |
Dandekar, M.S., Arabale, G. and Vijayamohanan, K. (2005) Prepara-tion and Characterization of Composite Electrodes of Coconut-Shell-Based Active Carbon and Hydrous Ruthenium Ox-ide for Supercapacitors. Journal of Power Sources, 141, 198-203. https://doi.org/10.1016/j.jpowsour.2004.09.008 |
[19] |
Luo, Z.H., Zhu, L.H., Zhang, H.Y. and Tang, H.Q. (2013) Polyaniline Uniformly Coated on Graphene Oxide Sheets as Supercapacitors Material with Improved Capacitive Proper-ties. Materials Chemistry and Physics, 139, 572-579. https://doi.org/10.1016/j.matchemphys.2013.01.059 |
[20] |
Lin, Y.W. and Wu, T.M. (2009) Synthesis and Charac-terization of Externally Doped Sulfonated Polyaniline/Multi- Walled Carbon Nanotube Composites. Composites Science and Technology, 69, 2559-2565. https://doi.org/10.1016/j.compscitech.2009.07.013 |
[21] |
Wang, X.F., Liu, B., Wang, Q.F., Song, W.F., Hou, X.J., Chen, D., et al. (2013) Three-Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All-Solid-State Supercapacitors. Advanced Materials, 25, 1479-1486. https://doi.org/10.1002/adma.201204063 |
[22] |
Yang, L., Cheng, S., Ding, Y., Zhu, X.B., Wang, Z.L. and Liu, M.L. (2012) Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High Capacity Pseudocapacitors. Nano Letters, 12, 321-325. https://doi.org/10.1021/nl203600x |
[23] |
Lang, X.Y., Hirata, A., Fujita, T. and Chen, M.W. (2011) Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nature Nanotechnology, 6, 232-236. https://doi.org/10.1038/nnano.2011.13 |