[1] |
Shah, A., Palmer, A.J.R. and Klein, A.A. (2020) Strategies to Minimize Intraoperative Blood Loss during Major Surgery. British Journal of Surgery, 107, E26-E38. https://doi.org/10.1002/bjs.11393 |
[2] |
Sultan, M.T., Hong, H., Lee, O.J., Ajiteru, O., Lee, Y.J., Lee, J.S., Lee, H., Kim, S.H. and Park, C.H. (2022) Silk Fibroin-Based Biomaterials for Hemostatic Applications. Biomolecules, 12, Article No. 660. https://doi.org/10.3390/biom12050660 |
[3] |
Moore, E.E., Moore, H.B., Kornblith, L.Z., Neal, M.D., Hoffman, M., Mutch, N.J., Schochl, H., Hunt, B.J. and Sauaia, A. (2021) Trauma-Induced Coagulopathy. Nature Reviews Disease Primers, 7, Article No. 30. https://doi.org/10.1038/s41572-021-00264-3 |
[4] |
Luo, Y., Tao, F., Wang, J., Chai, Y., Ren, C., Wang, Y., Wu, T. and Chen, Z. (2023) Development and Evaluation of Tilapia Skin-Derived Gelatin, Collagen, and Acellular Dermal Matrix for Potential Use as Hemostatic Sponges. International Journal of Biological Macromolecules, 2023, Article ID: 127014. https://doi.org/10.1016/j.ijbiomac.2023.127014 |
[5] |
Zheng, W.P., Hao, Y.P., Wang, D.Y., Huang, H.L., Guo, F.Z., Sun, Z.Y., Shen, P.L., Sui, K.Y., Yuan, C.Q. and Zhou, Q.H. (2021) Preparation of Triamcinolone Acetonide-Loaded Chitosan/Fucoidan Hydrogel and Its Potential Application as an Oral Mucosa Patch. Carbohydrate Polymers, 272, Article ID: 118493. https://doi.org/10.1016/j.carbpol.2021.118493 |
[6] |
Zhu, Y.L., Liu, L.B., Sun, Z.Y., Ji, Y.J., Wang, D.Y., Mei, L., Shen, P.L., Li, Z.X., Tang, S., Zhang, H., Zhou, Q.H. and Deng, J. (2021) Fucoidan as a Marine-Origin Prebiotic Modulates the Growth and Antibacterial Ability of Lactobacillus rhamnosus. International Journal of Biological Macromolecules, 180, 599-607. https://doi.org/10.1016/j.ijbiomac.2021.03.065 |
[7] |
Xing, X.J., Han, Y. and Cheng, H. (2023) Biomedical Applications of Chitosan/Silk Fibroin Composites: A Review. International Journal of Biological Macromolecules, 240, Article ID: 124407. https://doi.org/10.1016/j.ijbiomac.2023.124407 |
[8] |
Tomeh, M.A., Hadianamrei, R. and Zhao, X.B. (2019) Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics, 11, Article No. 494. https://doi.org/10.3390/pharmaceutics11100494 |
[9] |
Holland, C., Numata, K., Rnjak-Kovacina, J. and Seib, F.P. (2019) The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 8, e1800465. https://doi.org/10.1002/adhm.201800465 |
[10] |
Sun, W.Z., Gregory, D.A., Tomeh, M.A. and Zhao, X.B. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 1499. https://doi.org/10.3390/ijms22031499 |
[11] |
吴建兵, 夏娟. 创伤修复用丝素蛋白敷料的研究进展[J]. 丝绸, 2020, 57(10): 29-33. |
[12] |
Li, G.F. and Sun, S. (2022) Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules, 27, Article No. 2757. https://doi.org/10.3390/molecules27092757 |
[13] |
Park, Y.R., Sultan, M.T., Park, H.J., Lee, J.M., Ju, H.W., Lee, O.J., Lee, D.J., Kaplan, D.L. and Park, C.H. (2018) NF-κB Signaling Is Key in the Wound Healing Processes of Silk Fibroin. Acta Biomaterialia, 67, 183-195. https://doi.org/10.1016/j.actbio.2017.12.006 |
[14] |
Huang, T.T., Zhou, Z.H., Li, Q.Y., Tang, X.X., Chen, X.L., Ge, Y.F. and Ling, J. (2022) Light-Triggered Adhesive Silk-Based Film for Effective Photodynamic Antibacterial Therapy and Rapid Hemostasis. Frontiers in Bioengineering and Biotechnology, 9, Article ID: 820434. https://doi.org/10.3389/fbioe.2021.820434 |
[15] |
Baba, A., Matsushita, S., Kitayama, K., Asakura, T., Sezutsu, H., Tanimoto, A. and Kanekura, T. (2019) Silk Fibroin Produced by Transgenic Silkworms Overexpressing the Arg-Gly-Asp Motif Accelerates Cutaneous Wound Healing in Mice. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 107, 97-103. https://doi.org/10.1002/jbm.b.34098 |
[16] |
Shen, Y., Wang, X.Y., Li, B.B., Guo, Y.J. and Dong, K. (2022) Development of Silk Fibroin-Sodium Alginate Scaffold Loaded Silk Fibroin Nanoparticles for Hemostasis and Cell Adhesion. International Journal of Biological Macromolecules, 211, 514-523. https://doi.org/10.1016/j.ijbiomac.2022.05.064 |
[17] |
Haghighattalab, M., Kajbafzadeh, A., Baghani, M., Gharehnazifam, Z., Jobani, B.M. and Baniassadi, M. (2022) Silk Fibroin Hydrogel Reinforced with Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 891166. https://doi.org/10.3389/fbioe.2022.891166 |
[18] |
Guo, B.L., Dong, R.N., Bang, Y.P. and Li, M. (2021) Haemostatic Materials for Wound Healing Applications. Nature Reviews Chemistry, 5, 773-791. https://doi.org/10.1038/s41570-021-00323-z |
[19] |
Wang, Z.J., Hu, W.K., Du, Y.Y., Xiao, Y., Wang, X.H., Zhang, S.M., Wang, J.L. and Mao, C.B. (2020) Green Gas-Mediated Cross-Linking Generates Biomolecular Hydrogels with Enhanced Strength and Excellent Hemostasis for Wound Healing. ACS Applied Materials & Interfaces, 12, 13622-13633. https://doi.org/10.1021/acsami.9b21325 |
[20] |
Qiao, Z.W., Lv, X.L., He, S.H., Bai, S.M., Liu, X.C., Hou, L.X., He, J.J., Tong, D.M., Ruan, R.J., Zhang, J., Ding, J.X. and Yang, H.H. (2021) A Mussel-Inspired Supramolecular Hydrogel with Robust Tissue Anchor for Rapid Hemostasis of Arterial and Visceral Bleedings. Bioactive Materials, 6, 2829-2840. https://doi.org/10.1016/j.bioactmat.2021.01.039 |
[21] |
Bai, S.M., Zhang, X.L., Cai, P.Q., Huang, X.W., Huang, Y.Q., Liu, R., Zhang, M.Y., Song, J.B., Chen, X.D. and Yang, H.H. (2019) A Silk-Based Sealant with Tough Adhesion for Instant Hemostasis of Bleeding Tissues. Nanoscale Horizons, 4, 1333-1341. https://doi.org/10.1039/C9NH00317G |
[22] |
Han, J., Lv, X., Hou, Y., Yu, H., Sun, Y., Cui, R., Pan, P. and Chen, J. (2023) Multifunctional Hemostatic Polysaccharide-Based Sponge Enhanced by Tunicate Cellulose: A Promising Approach for Photothermal Antibacterial Activity and Accelerated Wound Healing. International Journal of Biological Macromolecules, 251, Article ID: 126386. https://doi.org/10.1016/j.ijbiomac.2023.126386 |
[23] |
Chen, X., Yan, G.L., Chen, M., Yang, P. and Xu, B.L. (2023) Alkylated Chitosan-Attapulgite Composite Sponge for Rapid Hemostasis. Biomaterials Advances, 153, Article ID: 213569. https://doi.org/10.1016/j.bioadv.2023.213569 |
[24] |
Wei, W., Liu, J., Peng, Z.B., Liang, M., Wang, Y.S. and Wang, X.Q. (2020) Gellable Silk Fibroin-Polyethylene Sponge for Hemostasis. Artificial Cells Nanomedicine and Biotechnology, 48, 28-36. https://doi.org/10.1080/21691401.2019.1699805 |
[25] |
Lee, J., Choi, H.N., Cha, H.J. and Yang, Y.J. (2023) Microporous Hemostatic Sponge Based on Silk Fibroin and Starch with Increased Structural Retentivity for Contact Activation of the Coagulation Cascade. Biomacromolecules, 24, 1763-1773. https://doi.org/10.1021/acs.biomac.2c01512 |
[26] |
Shefa, A.A., Taz, M., Lee, S.Y. and Lee, B.T. (2019) Enhancement of Hemostatic Property of Plant Derived Oxidized Nanocellulose-Silk Fibroin Based Scaffolds by Thrombin Loading. Carbohydrate Polymers, 208, 168-179. https://doi.org/10.1016/j.carbpol.2018.12.056 |
[27] |
俞林双, 金万慧, 周颖, 等. 丝素蛋白/茜草素复合纤维膜的制备及应用[J]. 现代纺织技术, 2023, 31(5): 58-65. |
[28] |
Huang, X., Fu, Q., Deng, Y., Wang, F., Xia, B., Chen, Z. and Chen, G. (2021) Surface Roughness of Silk Fibroin/Alginate Microspheres for Rapid Hemostasis in Vitro and in Vivo. Carbohydrate Polymers, 253, Article ID: 117256. https://doi.org/10.1016/j.carbpol.2020.117256 |
[29] |
Lei, C., Zhu, H., Li, J., Feng, X. and Chen, J. (2016) Preparation and Hemostatic Property of Low Molecular Weight Silk Fibroin. Journal of Biomaterials Science-Polymer Edition, 27, 403-418. https://doi.org/10.1080/09205063.2015.1136918 |
[30] |
王杨阳, 王岩松. 丝素蛋白生物材料在抗菌领域中的研究进展[J]. 中国感染控制杂志, 2018, 17(6): 547-552. |
[31] |
Ahmed, W., Zhai, Z. and Gao, C. (2019) Adaptive Antibacterial Biomaterial Surfaces and Their Applications. Materials Today Bio, 2, Article ID: 100017. https://doi.org/10.1016/j.mtbio.2019.100017 |
[32] |
Greenhalgh, R., Dempsey-Hibbert, N.C. and Whitehead, K.A. (2019) Antimicrobial Strategies to Reduce Polymer Biomaterial Infections and Their Economic Implications and Considerations. International Biodeterioration & Biodegradation, 136, 1-14. https://doi.org/10.1016/j.ibiod.2018.10.005 |
[33] |
管彤, 张锋. 生物活性丝素蛋白敷料在创面修复中的研究进展[J]. 丝绸, 2023, 60(2): 35-41. |
[34] |
诸玲玲, 孟现民, 张永信. 氨基糖苷类药物的发展历程[J]. 上海医药, 2011, 32(7): 322-326. |
[35] |
徐昌奎, 蒲小兵, 陆遥, 等. 载庆大霉素丝素蛋白作为半月板修复材料的安全性和抗菌性能[J]. 中国组织工程研究, 2021, 25(10): 1545-1549. |
[36] |
邓丽红, 谢臻, 麦蓝尹, 等. 蒽醌类化合物抗菌活性及其机制研究进展[J]. 中国新药杂志, 2016, 25(21): 2450-2455. |
[37] |
陈珍玉, 张小宁, 罗钰昕, 等. 丝素蛋白/姜黄素复合膜敷料促进皮肤创面愈合的评价[J]. 中国组织工程研究, 2021, 25(16): 2554-2561. |
[38] |
Foroushani, P.H., Rahmani, E., Alemzadeh, I., Vossoughi, M., Pourmadadi, M., Rahdar, A. and Díez-Pascual, A.M. (2022) Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. Nanomaterials, 12, Article No. 3426. https://doi.org/10.3390/nano12193426 |
[39] |
Eleraky, N.E., Allam, A., Hassan, S.B. and Omar, M.M. (2020) Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 12, Article No. 142. https://doi.org/10.3390/pharmaceutics12020142 |
[40] |
Hu, L.H., Yang, X., Yin, J., Rong, X., Huang, X.L., Yu, P.Q., He, Z.Q. and Liu, Y. (2021) Combination of AgNPs and Domiphen Is Antimicrobial against Biofilms of Common Pathogens. International Journal of Nanomedicine, 16, 7181-7194. https://doi.org/10.2147/IJN.S334133 |
[41] |
Chandraker, S.K. and Kumar, R. (2022) Biogenic Biocompatible Silver Nanoparticles: A Promising Antibacterial Agent. Biotechnology and Genetic Engineering Reviews, 2, 1-35. https://doi.org/10.1080/02648725.2022.2106084 |
[42] |
Qamer, S., Romli, M.H., Che-Hamzah, F., Misni, N., Joseph, N.M.S., Al-Haj, N.A. and Amin-Nordin, S. (2021) Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules, 26, Article No. 5057. https://doi.org/10.3390/molecules26165057 |
[43] |
Xie, W.J., Chen, J.Y., Cheng, X.T., Feng, H., Zhang, X., Zhu, Z., Dong, S.S., Wan, Q.B., Pei, X.B. and Wang, J. (2023) Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration. Small, 19, e2205941. https://doi.org/10.1002/smll.202205941 |
[44] |
Mehrabani, M.G., Karimian, R., Mehramouz, B., Rahimi, M. and Kafil, H.S. (2018) Preparation of Biocompatible and Biodegradable Silk Fibroin/Chitin/Silver Nanoparticles 3D Scaffolds as a Bandage for Antimicrobial Wound Dressing. International Journal of Biological Macromolecules, 114, 961-971. https://doi.org/10.1016/j.ijbiomac.2018.03.128 |
[45] |
Babu, P.J., Doble, M. and Raichur, A.M. (2018) Silver Oxide Nanoparticles Embedded Silk Fibroin Spuns: Microwave Mediated Preparation, Characterization and Their Synergistic Wound Healing and Anti-Bacterial Activity. Journal of Colloid and Interface Science, 513, 62-71. https://doi.org/10.1016/j.jcis.2017.11.001 |
[46] |
李振, 刘素美, 贾兰, 等. 丝素蛋白包裹的银纳米粒子稳定性及抗菌性研究[J]. 化工新型材料, 2019, 47(5): 264-268. |
[47] |
Shao, J.L., Cui, Y.T., Liang, Y., Liu, H., Ma, B.J. and Ge, S.H. (2021) Unilateral Silver-Loaded Silk Fibroin Difunctional Membranes as Antibacterial Wound Dressings. Acs Omega, 6, 17555-17565. https://doi.org/10.1021/acsomega.1c02035 |
[48] |
徐双梦, 魏延, 苏慧, 等. 丝素蛋白改性的纳米氧化锌的性能研究[J]. 功能材料, 2019, 50(4): 4121-4125. |
[49] |
李兢思, 甘秋云, 朱琳艳, 等. 透明质酸用于伤口敷料的研究进展[J]. 化纤与纺织技术, 2022, 51(7): 18-21. |
[50] |
Xuan, H., Tang, X., Zhu, Y., Ling, J. and Yang, Y. (2020) Freestanding Hyaluronic Acid/Silk-Based Self-Healing Coating toward Tissue Repair with Antibacterial Surface. ACS Applied Bio Materials, 3, 1628-1635. https://doi.org/10.1021/acsabm.9b01196 |
[51] |
Kong, Y., Tang, X.X., Zhao, Y.H., Chen, X.L., Yao, K., Zhang, L.L., Han, Q., Zhang, L.Z., Ling, J., Wang, Y.J. and Yang, Y.M. (2020) Degradable Tough Chitosan Dressing for Skin Wound Recovery. Nanotechnology Reviews, 9, 1576-1585. https://doi.org/10.1515/ntrev-2020-0105 |
[52] |
Tang, X.X., Gu, X.Y., Wang, Y.L., Chen, X.L., Ling, J. and Yang, Y.M. (2020) Stable Antibacterial Polysaccharide-Based Hydrogels as Tissue Adhesives for Wound Healing. RSC Advances, 10, 17280-17287. https://doi.org/10.1039/D0RA02017F |
[53] |
Eivazzadeh-Keihan, R., Radinekiyan, F., Aliabadi, H.A.M., Sukhtezari, S., Tahmasebi, B., Maleki, A. and Madanchi, H. (2021) Chitosan Hydrogel/Silk Fibroin/Mg(OH)(2) Nanobiocomposite as a Novel Scaffold with Antimicrobial Activity and Improved Mechanical Properties. Scientific Reports, 11, Article No. 650. https://doi.org/10.1038/s41598-020-80133-3 |
[54] |
Tu, H., Wu, G.M., Yi, Y., Huang, M.T., Liu, R., Shi, X.W. and Deng, H.B. (2019) Layer-by-Layer Immobilization of Amphoteric Carboxymethyl Chitosan onto Biocompatible Silk Fibroin Nanofibrous Mats. Carbohydrate Polymers, 210, 9-16. https://doi.org/10.1016/j.carbpol.2019.01.047 |
[55] |
张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
[56] |
Hashimoto, T., Kojima, K. and Tamada, Y. (2020) Higher Gene Expression Related to Wound Healing by Fibroblasts on Silk Fibroin Biomaterial than on Collagen. Molecules, 25, Article No. 1939. https://doi.org/10.3390/molecules25081939 |
[57] |
Brooks, A.K., Ramsey, R.G., Zhang, N. and Yadavalli, V.K. (2023) Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomaterials Science & Engineering, 9, 5793-5803. https://doi.org/10.1021/acsbiomaterials.3c00741 |